Descripción del proyecto
Combustión asistida por plasma para reducir las emisiones de CO2
Las emisiones de CO2 de la quema de combustibles representa la mayor parte de las emisiones de gases de efecto invernadero antropogénicas. Dado que las tecnologías electrificadas limpias no alcanzarán el desarrollo comercial antes de 2040, las tecnologías de combustión neutras en CO2 (biocombustibles) o sin CO2 (hidrógeno) constituyen una alternativa prometedora. Sin embargo, hasta ahora, no pueden cumplir las normativas cada vez más estrictas en materia de emisiones contaminantes, en particular respecto a los óxidos nítricos y el monóxido de carbono. La combustión asistida por plasma podría ser la respuesta a esta dificultad, pero todavía no se comprende bien el efecto de este método sobre los polutantes. El equipo del proyecto GREENBLUE, financiado con fondos europeos, investigará para desarrollar un modelo robusto y adaptable para predecir los efectos de la combustión asistida por plasma en cámaras de combustión a gran escala. Además, probará un llama de combustible/aire o de hidrógeno/aire estable, sostenible y con poco óxido nítrico en una cámara de combustión representativa de motores de aviación.
Objetivo
To fight climate change, we must urgently reduce the CO2 emissions caused by fossil-fuel combustion, which represents today over 80% of the primary energy production. Clean electrified solutions are on the horizon but are unlikely to reach commercial development before 2040. Novel CO2-neutral (biofuels) or CO2-free (H2) combustion technologies are widely considered, but these technologies face increasingly stringent regulations on pollutant emissions, in particular nitric oxides and carbon monoxide. To reduce pollutants, the strategy is to use low-temperature flames. However, these flames are prone to instabilities and extinction, thus causing safety issues. Plasma-assisted combustion (PAC) is a highly promising method to stabilize low-temperature flames thanks to the extraordinary ability of plasma discharges to efficiently produce combustion-enhancing radicals. Today, however, their effects on pollutants are poorly understood and their scalability to industrial combustors remains to be proven.
Our goal is to bring PAC to the level of maturity needed to make it practical on real combustion devices. For this, we will first elucidate the thermochemical mechanisms of plasma stabilization in CH4- and H2-air flames and their impact on pollutant emissions. This will require measuring the rates of poorly known reactions involving excited electronic states of molecules with advanced femtosecond optical diagnostics. With this knowledge, we will explore two novel strategies to minimize pollutants. We will then develop a robust and versatile multi-physics model to predict PAC effects in large-scale combustors. The final challenge will be to demonstrate for the first time a stable, low NOx, hydrogen/air flame in a combustor representative of aircraft engines. Beyond combustion, this project will open novel ways to better predict, control, and enhance chemical processes in applications such as hydrogen production, CO2 conversion, bio-decontamination, or materials synthesis.
Ámbito científico
Palabras clave
Programa(s)
Régimen de financiación
ERC-ADG - Advanced GrantInstitución de acogida
91192 Gif Sur Yvette
Francia