Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Characterization of the architecture, composition and evolution of a novel light perception organelle in an emerging model fungus.

Project description

Eye-like structures in fungi: composition and evolution

Higher organisms possess eyes, complex optical systems that enable them to receive and perceive light, which undoubtedly offers a unique view of the world. Several microbial eukaryotic lineages have evolved similar structures for light perception. The EU-funded FungEye project will focus on the Blastocladiella emersonii fungus, where the light perception organelle relies on the unique CyclOp fusion protein. Researchers’ aim is to characterise the structure and function of this unique organelle as it can serve as a tool in optogenetic studies. The work will provide unprecedented information on how light perception has emerged and evolved in fungi and will pave the way to the development of synthetic light-perceiving systems.

Objective

Light perception is one of the most important sources of information for life on Earth. Its importance is such, that several microbial eukaryotic lineages independently evolved analogous sub-cellular ‘eye-structures’ to achieve a similar function. In the microbial lineages we see a similar ‘recipe’ for these systems; a light occluding or refractory surface positioned next to an action potential-generating opsin rich membrane layer. These systems represent one of the most spectacular cases of multiple convergent evolution of a cellular system.
Recently, one such eye-organelle structures was described in the early-diverging zoosporic fungi Blastocladiella emersonii (Be). This putative organelle relies on a unique fusion protein (CyclOp), of a rhodopsin domain and a guanylyl cyclase domain to perceive light. Due to the capability of the CyclOp protein to control the intracellular cGMP levels of the cell, it has been intensely studied as an optogenetic tool for signalling-dependent studies. These results highlight the importance of discovery science in non-standard model microbes. However, we still do not know which cellular and molecular elements compose the wider CyclOps-system and how they interact with each other. What is more, the evolutionary history and origin of the organellar protein network remains unknown.
The FungEye project aims to characterize the cellular structure, proteome and evolutionary ancestry of this novel light perception organelle. For this we will reconstruct the complete 3D cell architecture of Be zoospores to understand this cellular structure and characterize the wider protein network of the CyclOps-system. Once characterized, we will be able to reconstruct the CyclOps-organelle evolutionary history through its proteome by phylogenomics. Such progress will not only allow us to study how light perception evolved in fungi but also to identify functions useful for building synthetic light perceiving cellular systems.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2020

See all projects funded under this call

Coordinator

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 212 933,76
Address
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
United Kingdom

See on map

Region
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 212 933,76
My booklet 0 0