Project description
Microrobots that mimic bacterial movement
Microrobots are miniaturised robots that are extremely promising for various medical applications including minimally invasive surgical procedures, as an alternative to colonoscopy or for drug delivery. However, there are significant challenges associated with their powering. The EU-funded IMIPORU project proposes to generate microrobots that transform acoustic waves into controllable motion. Researchers will exploit ultrasound transducers to generate microrobots that can respond to hydrodynamics like flagellated bacteria. These autonomous microrobots will be capable of tactic behaviour, while their hydrogel-based composition will further endow them with the capacity to interact with the biological environment.
Objective
Microrobots with the ability of sensing physiologically important signals and respond by autonomously accumulating at target sites may revolutionize minimally invasive medicine. Miniaturizing electronic sensors, actuators and batteries to microscale is not feasible with the state-of-the-art technology. A promising alternative for instantiating on-board sensing and computation for remotely powered micromachines is exploiting structure and material properties. Recent studies show that micromachines can transform acoustic waves into controllable motion and powering can be realized using off-the-shelf medical ultrasound transducers. The objective of IMIPORU project is to develop the first truly autonomous microrobots powered by acoustic streaming (acoustically generated steady flow) that can perform taxis behaviour. To achieve this task, I will systematically study fluid-structure interaction (FSI) at the microscale numerically, experimentally and analytically. This analysis will lead to the design of novel mechanisms that respond to varying hydrodynamic loads. By manifesting mechanical instabilities, robots will mimic flagellated bacteria that exploits the buckling of the hook to change direction. Furthermore, understanding FSI is instrumental for optimizing the acoustic propulsion machinery. State-of-the-art, high-resolution two-photon polymerization technique for photocurable polymers will be used to manufacture multi-material structures with complex geometries. Since acoustic actuation does not depend on material choice, integrating responsive soft hydrogels into the structure will add another dimension for interacting with the environmental via chemical and temperature signals. Incorporating intelligent mechanical design along with responsive materials will enable microrobots to change their form and kinematics in different viscosity, temperature or chemical conditions, paving the way to autonomous navigation including viscotaxis, chemotaxis, and thermotaxis
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- natural sciencesbiological sciencesmicrobiologybacteriology
- natural scienceschemical sciencespolymer sciences
- natural sciencesphysical sciencesclassical mechanicsfluid mechanics
- natural sciencesmathematicspure mathematicsgeometry
- natural sciencesphysical sciencesacousticsultrasound
You need to log in or register to use this function
Keywords
Programme(s)
Funding Scheme
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinator
1015 Lausanne
Switzerland