Project description
Microrobots that mimic bacterial movement
Microrobots are miniaturised robots that are extremely promising for various medical applications including minimally invasive surgical procedures, as an alternative to colonoscopy or for drug delivery. However, there are significant challenges associated with their powering. The EU-funded IMIPORU project proposes to generate microrobots that transform acoustic waves into controllable motion. Researchers will exploit ultrasound transducers to generate microrobots that can respond to hydrodynamics like flagellated bacteria. These autonomous microrobots will be capable of tactic behaviour, while their hydrogel-based composition will further endow them with the capacity to interact with the biological environment.
Objective
Microrobots with the ability of sensing physiologically important signals and respond by autonomously accumulating at target sites may revolutionize minimally invasive medicine. Miniaturizing electronic sensors, actuators and batteries to microscale is not feasible with the state-of-the-art technology. A promising alternative for instantiating on-board sensing and computation for remotely powered micromachines is exploiting structure and material properties. Recent studies show that micromachines can transform acoustic waves into controllable motion and powering can be realized using off-the-shelf medical ultrasound transducers. The objective of IMIPORU project is to develop the first truly autonomous microrobots powered by acoustic streaming (acoustically generated steady flow) that can perform taxis behaviour. To achieve this task, I will systematically study fluid-structure interaction (FSI) at the microscale numerically, experimentally and analytically. This analysis will lead to the design of novel mechanisms that respond to varying hydrodynamic loads. By manifesting mechanical instabilities, robots will mimic flagellated bacteria that exploits the buckling of the hook to change direction. Furthermore, understanding FSI is instrumental for optimizing the acoustic propulsion machinery. State-of-the-art, high-resolution two-photon polymerization technique for photocurable polymers will be used to manufacture multi-material structures with complex geometries. Since acoustic actuation does not depend on material choice, integrating responsive soft hydrogels into the structure will add another dimension for interacting with the environmental via chemical and temperature signals. Incorporating intelligent mechanical design along with responsive materials will enable microrobots to change their form and kinematics in different viscosity, temperature or chemical conditions, paving the way to autonomous navigation including viscotaxis, chemotaxis, and thermotaxis
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences microbiology bacteriology
- natural sciences chemical sciences polymer sciences
- natural sciences physical sciences classical mechanics fluid mechanics
- natural sciences mathematics pure mathematics geometry
- natural sciences physical sciences acoustics ultrasound
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1015 LAUSANNE
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.