Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Recentering Friction Floor Dissipater for Resilient-based Design of Steel Structures

Descripción del proyecto

Una innovadora disipación por el suelo aumenta la resistencia de los edificios a los terremotos

Los terremotos pueden generar la sensación de que un gigante nos agarra y nos sacude de un lado a otro. Resistir estas fuerzas laterales en los edificios y, al mismo tiempo, permitir la elasticidad para evitar la rotura es fundamental para la seguridad. Para ello, se suelen utilizar marcos de acero arriostrados concéntricamente (CBF, por sus siglas en inglés), en que los arriostramientos diagonales están situados en el plano vertical del marco. Sin embargo, se enfrentan a desafíos debido a sus complejos comportamientos inelásticos asimétricos. El equipo del proyecto RFFD, respaldado por las Acciones Marie Skłodowska-Curie, está desarrollando un innovador dispositivo de disipación horizontal para los suelos de los edificios con CBF de acero con la ayuda del diseño computacional basado en la física y la simulación.

Objetivo

In regions of moderate and high seismicity such as Europe, steel concentrically braced frames (CBFs) are considered a cost-effective lateral force resisting system to withstand seismic and/or wind loading. Comprehensive building-specific economic loss assessment suggests that the expected annual losses of steel CBF buildings are mainly associated with repairs of acceleration-sensitive building components, which in turn results into building functionality disruption after an earthquake. Higher building vibration mode effects and the complex asymmetric inelastic behaviour of steel braces make it challenging to prevent soft-storey mechanisms that potentially lead to global collapse even in capacity-designed steel CBF buildings. The proposed project aims to address the aforementioned issues by developing an innovative dissipation device, named Recentring Friction Floor Dissipator (RFFD) to control the earthquake-induced vibration and demands in steel CBF buildings through its diaphragm response instead of the lateral load resisting system that is traditionally attempted. This will minimize the variability of the inertia force demands along with the earthquake-induced life-cycle costs. The device realization will be achieved through physics-based computational simulation-based design validated to full-scale testing. Macro-models will be developed to facilitate, for the first time, time-dependent nonlinear building simulations that will be benchmarked to a landmark system-level experiment. A graphics-based design tool will be developed that will combine in a single format economic loss metrics with multiple building performance indicators to aid decision-making for enhanced building service life in seismic regions.
After having acquired extended experience in the field of earthquake engineering in New Zealand and Japan, the applicant wants to reintegrate to Europe to consolidate his career in a leading European University.

Palabras clave

Coordinador

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Aportación neta de la UEn
€ 191 149,44
Dirección
BATIMENT CE 3316 STATION 1
1015 Lausanne
Suiza

Ver en el mapa

Región
Schweiz/Suisse/Svizzera Région lémanique Vaud
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 191 149,44