Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Exploiting strong light-matter coupling for organic polariton-based photonic devices

Project description

Quasiparticles that could herald a breakthrough in photonic technologies

Exciton-polaritons are photonic-electronic quasiparticles arising from the strong coupling of light with matter in the form of an exciton. Angle-resolved measurements of light dispersion inside structures can reveal information regarding the strength of the light-matter coupling, but their application potential has largely been neglected. Funded by the Marie Skłodowska-Curie Actions programme, the PolDev project plans to develop organic polariton devices that leverage exciton-like dispersion in strongly coupled microcavities. Researchers will create interference filters with ultra-low angular dispersion, thereby offering a new route to designing optical systems. In addition, they will use these filters to design high-quality microcavity polariton light-emitting diodes with unprecedented colour purity for display applications.

Objective

The coherent coupling of photons and material resonances, known as strong light-matter coupling, has recently emerged as a concept to realise a variety of novel devices. By hybridising light in a micro- or nano-scale cavity with a material resonance, often an exciton to create exciton-polaritons, properties of both light and matter can be manipulated. While this has shown great promise in systems that exploit a change in energy levels of a material, such as in polariton chemistry, the resulting change of light dispersion has been largely neglected for applications. Within the project PolDev, I aim to realise organic polaritonic devices that make full use of the exciton-like dispersion in ultra-strongly coupled microcavities with suitable detuning. In doing so, I will realise interference-based transmission filters with ultra-low angular dispersion that will enable a new way of designing optical systems. I will further exploit this concept to design high-Q microcavity polariton light emitting diodes for display applications with unprecedented colour purity and to showcase new pathways for electrically pumped polariton lasing. The resulting devices will further be ported onto mechanically flexible platforms, paving the way for novel polaritonic applications.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2020

See all projects funded under this call

Coordinator

UNIVERSITAT ZU KOLN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 174 806,40
Address
ALBERTUS MAGNUS PLATZ
50931 KOLN
Germany

See on map

Region
Nordrhein-Westfalen Köln Köln, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 174 806,40
My booklet 0 0