Descripción del proyecto
Estudio de la dinámica de proteínas de gran tamaño mediante criomicroscopía
Las proteínas son entidades dinámicas que pasan por numerosas transiciones y fluctuaciones estructurales, las cuales son esenciales para sus funciones biológicas. Los métodos híbridos que combinan biofísica computacional con biología estructural experimental han demostrado tener éxito a la hora de describir la conformación de las proteínas, es decir, su forma tridimensional. El proyecto EnLaCES, financiado por las Acciones Marie Skłodowska-Curie, presentará una nueva metodología híbrida que aproveche las innovaciones recientes en criomicroscopía electrónica para examinar la dinámica continua y el panorama energético de proteínas multidominio de gran tamaño. El trabajo del proyecto podría demostrar ser fundamental para la comprensión de la fisiología del encéfalo y el diseño de tratamientos para un amplio abanico de enfermedades.
Objetivo
Proteins are dynamic entities that undergo many structural transitions and fluctuations, which are essential to their biological functions. We, therefore, need continuous descriptions of protein conformational space in the form of energy landscapes in order to properly understand their mechanisms of action. This is now becoming possible through the use of hybrid methods, which combine computational biophysics with experimental structural biology and overcome the limitations of either approach alone. In this proposal, we present a new hybrid methodology that leverages recent innovations in cryo-electron microscopy image analysis to examine continuous dynamics and free energy landscapes of large, multi-domain proteins, which are not achievable with existing methods. Our novel interdisciplinary pipeline will involve the use of efficient coarse-grained representations of proteins from computational biophysics coupled with sophisticated image processing tools including 3D reconstruction, classification, and dimensionality reduction. The specific objective is to extract reaction coordinates from 3D class averages and use them to generate conformational landscapes onto which the raw 2D images can be mapped. The resulting free energy landscapes will reveal all conformational states with physiological relevance and the preferred transition pathways, which can be analysed further using molecular dynamics simulations. We will apply our pipeline to ionotropic glutamate receptors, which are tetrameric ligand-gated ion channels with large, dynamic, multi-domain architectures that are critical to synaptic transmission and plasticity in the mammalian central nervous system. We expect our results to be of great benefit to the broad structural biology community and to be instrumental in understanding brain physiology and designing treatments for a wide range of diseases.
Ámbito científico
Palabras clave
Programa(s)
Régimen de financiación
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinador
28006 Madrid
España