Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Spin-selective chiral nano-cages for molecular spintronics

Descripción del proyecto

Un nuevo espín en el almacenamiento de memoria y la computación cuántica

Los ordenadores convencionales almacenan información principalmente de dos formas: a largo plazo con la información cifrada en la dirección de magnetización de pequeñas superficies de medios magnéticos y a medio plazo con la información almacenada eléctricamente. Los dispositivos espintrónicos aprovechan el espín del electrón en lugar de su carga para procesar la información. La espintrónica convencional se basa en materiales magnéticos inorgánicos y en los retos técnicos necesarios. El proyecto SPINCS, con el apoyo de las Acciones Marie Skłodowska-Curie, está investigando el uso de nanojaulas supramoleculares quirales selectivas del espín. El espín se transferirá de la molécula de la jaula hospedadora a la molécula huésped más pequeña tras la excitación con luz basada en la lateralidad de las moléculas quirales, permitiendo el almacenamiento del espín o la modificación con un control sin precedentes.

Objetivo

Conventional electronics employs the electron’s charge to process information. An alternative route is to utilise its spin instead, promising for realising equivalent devices that operate far more energy-efficiently, but also paving the way for entirely new applications like non-volatile memory or quantum computing. Previous attempts to realise such spintronics platforms were based on inorganic magnetic materials, often requiring very low temperatures and highest material purities that involve energy-extensive fabrication processes. Within this highly interdisciplinary project, I will explore an entirely different avenue towards spin-control which is based on the concept of chirality in novel molecular self-assemblies. Together with experts in synthetic chemistry, I have designed supramolecular cages that are chiral and can also encapsulate smaller molecules inside. Upon excitation with light, an electron can be transferred from the host to the guest, and with it the desired spin based on the chosen handedness of the molecules. This enables spin storage or switching and thus to encode information. To this end, I will combine time-resolved optical and electron spectroscopy to unravel the mechanism of chirality-induced spin-selectivity in such supramolecular structures, and then employ it for spin-dependent charge transfer from host to guest, tunable through spin-orbit coupling of the chosen building blocks. As such, I will exploit the versatility of a chemical bottom-up approach combined with light-matter interactions for the first time in chiral supramolecular nanostructures for unprecedented optical spin control, dictated by molecular design. This research will open up the path to molecular spintronics applications like memory storage, sensors or logic devices for quantum computing.

Coordinador

RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG
Aportación neta de la UEn
€ 246 669,12
Dirección
SEMINARSTRASSE 2
69117 Heidelberg
Alemania

Ver en el mapa

Región
Baden-Württemberg Karlsruhe Heidelberg, Stadtkreis
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 246 669,12

Socios (1)