Project description
3D-printed vascular graft could mimic natural blood vessels
Regenerative medicine could greatly benefit from 3D printing, where the goal is to produce scaffolds to repair or replace damaged tissues and organs. Funded by the Marie Skłodowska-Curie Actions programme, the STEMCEDIF project aims to produce 3D-printed polymeric cell-laden vascular grafts. The scaffold will be composed of three layers filled with blood vessel cells to mimic the structure and interactions of fibroblasts, smooth muscle cells and endothelial cells. Ultimately, the project will employ induced pluripotent stem cells isolated from somatic cells of healthy donors and incorporate them in the polymer architecture to formulate the several layers of 3D scaffolds and mimic the saphenous vein. Project results could pave the way for designing biocompatible scaffolds to repair tissue after aneurysms or aortic dissections.
Objective
The aim of the interdisciplinary STEMCEDIF project is to produce polymeric cell-laden vascular grafts by 3D printing for their usage as a biomimetic substrate for vascular engineering in applications after blood vessel disorders.
In order to produce scaffolds for tissue engineering, 3D printing technology is one of the most promising methods. However, the generation of biocompatible, stable and low-cost scaffolds material for tissue regeneration remains a big challenge. Naturally derived polymers, such as collagen type I and elastin, exhibit the unique biological properties of high biocompatibility, however poor structural stability and mechanical properties. On the other hand addition of synthetic polymers including PCL can significantly improve the stability and mechanical properties of scaffolds, making it very promising for producing scaffolds. The addition of growth factors and antibacterial agents could be another advantage for direct cell adhesion and differentiation and prevent bacterial infection. The scaffold will be composed of three layers filled with blood vessel cells, to mimic the structure and interactions of fibroblasts, smooth muscle cells (SMc) and endothelial cells (ECs) layer. The final part of the studies employ induced pluripotent stem cells isolated from somatic cells of healthy donors, differentiated into SMc and ECs will be incorporated in the specific arrangement within the polymer architecture to formulate the several layers of 3D scaffolds to mimic saphenous vein.
The obtained results will allow to get one step forward to learn about designing biocompatible scaffolds for increase regeneration and tissue integration after aneurysms or aortic dissections in vessel disorders such as rare diseases. Due to the precision which should be preserved while mimicking the ECM of blood vessels and simultaneously incorporating cells within the structure, the unique 3D printing method involving direct cell printing will be used in the project.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences clinical medicine angiology vascular diseases
- natural sciences biological sciences cell biology
- medical and health sciences medical biotechnology tissue engineering
- medical and health sciences medical biotechnology cells technologies stem cells
- engineering and technology mechanical engineering manufacturing engineering additive manufacturing
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
08908 L'Hospitalet De Llobregat
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.