Project description
Understanding the nature of topological effects could pave the way for rational design
Topology has become a key area of research into the physics of materials, a prime example being how some insulators can conduct electricity along a single-atom layer on their surfaces. Topological materials are apparently hiding in plain sight, and a recent discovery suggests a ‘fragile’ version of topology might exist in all crystalline materials. However, little is known about the microscopic origin of topological effects. With the support of the Marie Skłodowska-Curie Actions programme, the IPTM project is filling this gap to predict topological effects based on the contributions of quantum interactions. This could pave the way for new functionalities for future quantum technologies.
Objective
The recent classification of symmetry-indicated band structure topologies for all crystallographic structures has led to the prediction that one third of all materials are topological. We are thus at a very exciting crossroad where the theory of topological materials (TM) is gaining enough maturity to transform material science, opening the way to real settings and potential long term applications. There are however key challenges remaining for the building of efficient topological quantum devices. Indeed, little is known on the microscopic origin of topology in TM because (i) the general analytical conditions for nontrivial topology is unknown even for simple tight-binding models, (ii) there is a big jump in complexity towards the modeling of real materials (including all sub-lattices, orbitals, and spins), and (iii) the quantum interactions are hidden in the effective one-body (tight-binding) parameters. The aim of this “Inverse Problem for Topological Materials” (IPTM) proposal is to address these issues concretely and practically; (A) by establishing the inverse map for generic few-band lattice models, and then by refining to the most representative crystalline symmetric structures; (B) by establishing the inverse map in real settings through the state-of-the-art modeling of (families of) real materials from the combination of first principles computational results (Density Function Theory and optimized wannierization) and with lattice models systematically derived from group theory; (C) by extracting the contributions of the quantum interactions (electron-electron, electron-phonon, exchange) to the microscopic tight-binding parameters. Aiming at a fundamental understanding of topology in materials, this proposal aims to culminate in the prediction of completely new physics and functionalities, allowing the design of future quantum technology. Consequently this timely action is anticipated to start a new chapter in this active and impactful branch of science.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering crystals
- natural sciences mathematics applied mathematics mathematical physics
- natural sciences mathematics pure mathematics topology
- natural sciences physical sciences quantum physics quantum field theory
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
CB2 1TN CAMBRIDGE
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.