Project description
Supporting the triboelectric nanogenerator as an implantable bioapplication
A triboelectric nanogenerator (TENG), a device that was invented in 2012, converts mechanical energy into useful electric power. Researchers have begun implanting TENGs in animals to gain an understanding of the device's potential for energy harvesting from heartbeat and respiration. However, the interactions between triboelectrification and muscle dynamics remain unclear, challenging the application of TENG as an implantable device. Addressing this, the EU-funded TEMD project aims to develop a triboelectrification–muscle dynamics framework that will support the design, characterisation and optimisation of TENG for implantable bioapplications under different muscle dynamics on both the macroscale and nanoscale.
Objective
With explosive development and demand of implantable bio-applications, battery replacement becomes a key issue to achieve permanent implantation in vivo. Recent advances in energy nanogenerators have allowed for self-power function by conversing mechanical energy to electric energy, promising the battery-free implantation of bio-applications. Among the emerging nano harvesting technologies, triboelectrification initially proposed in 2012 is the front one due to universal availability, from enormous to tiny movements and even low-frequency motion in vivo. Another advantage of triboelectrification is the abundant choices of materials to meet the requirement of biocompatibility. Hence, the triboelectrification is the enabling technology for the next generation self-powered implant. Recently, researchers have commenced implanting triboelectric nanogenerators (TENG) in animals to evaluate the potential of energy harvesting from heart beating and respiration. However, the understanding of interactions between triboelectrification and muscle dynamics for energy harvesting is unclear. The experiments are limited in measuring, explaining and quantifying the performance of TENG by ignoring the complex dynamics of muscles, significantly hindering the application of TENG as implantable device. The proposal aims to develop a triboelectrification-muscle dynamics (TEMD) framework based on experiment and modelling to support the design, characterization and optimization of TENG for implantable bio-applications under different muscle dynamics on macro/nano scales. The framework will be able to (1) predict the output performance of TENG at any position of specific muscle, and (2) to design and optimize TENG in certain circumstances for the improvement of performance and durability. Such framework will also provide solid foundations and physical-mechanical guidance for other implantable energy harvesters, such as piezoelectric and flexoelectric nanogenerators.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electrical engineering electric energy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
30167 Hannover
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.