Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Echo-acoustic signalling of aposematic and cryptic insects – A bat-inspired approach

Project description

Can insects protect themselves by reflecting bat echolocation calls?

Bats produce ultrasonic calls to detect their prey through echolocation. The EU-funded EchoBug project will investigate if insects use reflection properties to hide from or signal their unpalatability to echolocating bats. The research fellow will use recordings of selected insect species to conduct prey-detection and -capture experiments using live bats. They will also apply neural network algorithms for classifying and analysing the distinguishing features in different insect echoes. This will enable a detailed investigation of the underlying acoustic mechanisms of the interaction between prey and predators, informing biomimetic applications for detecting and identifying objects by sonar. EchoBug will combine sensory ecology and animal behaviour with applied engineering, signal processing, bio-inspired sensor systems, and neural network applications.

Objective

In the arms race between prey and predators, diverse anti-predator defence mechanisms evolved. To avoid predation, many insects developed camouflage (crypsis) or chemicals that render them distasteful or toxic. To warn of their unpalatability, many insects evolved striking warning colours or patterns (aposematism). Insects comprise most of the diet of bats. Some of these nocturnal predators glean resting, silent, motionless diurnal insects from the vegetation. Instead of using vision during foraging, they produce ultrasonic calls and detect their prey through echolocation.
Here, I want to research whether visually cryptic or aposematic insects also have cryptic or aposematic acoustic reflection properties, to hide from or signal their unpalatability to echolocating bats. I will use bio-inspired sensor systems to acquire echo-acoustic sonar recordings of selected insect species and conduct behavioural prey-detection and -capture experiments using live bats to explore the prevailing acoustic predator-prey interactions. Based on these experiments, I will apply neural network algorithms for classifying and analysing the distinguishing features in different insect echoes. This approach will allow an in-depth investigation of the underlying acoustic mechanisms of the interaction between prey and predators and will inform and inspire biomimetic applications for detecting and identifying objects by sonar. Further, the project will lead to synergism between the research fields of biology and engineering in the study of animal interactions and bio-inspired robotics.
Combining sensory ecology and animal behaviour with applied engineering, signal processing, bio-inspired sensor systems, and neural network applications, will positively impact on my career development. In addition, the scientific training, and transferable skills gained will substantially contribute to my career as an independent, interdisciplinary researcher, and a successful group leader.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2020

See all projects funded under this call

Coordinator

UNIVERSITEIT ANTWERPEN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 166 320,00
Address
PRINSSTRAAT 13
2000 Antwerpen
Belgium

See on map

Region
Vlaams Gewest Prov. Antwerpen Arr. Antwerpen
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 166 320,00
My booklet 0 0