Skip to main content

High Resolution, Reduced Energy Flexible Electronics for Enhanced Brain-Spine Interfaces (REFLEX)

Objective

Emerging bioelectronic medical devices, such as brain-spine interfaces (BSI), are improving treatments of the pathophysiological processes at the root of sensorimotor and cognitive disorders. Despite the emerging success of BSIs, the biological and electrophysiological mechanisms underlying treatments remain poorly understood. A significant barrier to their description is the lack of minimally invasive BSIs for real-time, closed-loop monitoring of electrophysiological markers involved in the stabilization and regeneration of neural pathways. REFLEX seeks to overcome the power and packaging barriers that have held back real-time monitoring of neural pathways by leveraging two innovative technologies: (1) the picojoule/bit energy efficiency of wireless backscatter communication and (2) the conformable, compatible circuit boards. REFLEX will enable high spatial and temporal resolution monitoring of neural pathways by providing up to 16 channels for electrophysiological recording at up to 20 kSamples/sec with 16-bit resolution per channel (≥5Mbps total data rate) at <2 mW of total power consumption for recording. By incorporating a low power LED for optogenetic stimulation of neurons, REFLEX will test the effectiveness of targeted therapies to regenerate damaged neural pathways in the spinal cord. The proposed project aligns with the MSCA mission by facilitating the two-way transfer of knowledge in material science, electrical engineering, and neuroscience between the host and the applicant. It combines the applicant’s expertise in wireless backscatter communications and electronic instrumentation with the host laboratory’s expertise in conformable electrode design and interdisciplinary breakthroughs in implantable systems. Through hands-on research, formal training, and new collaborations, the applicant will enhance his research expertise, broaden his professional skill sets, and mature his competencies as a mobile researcher, engineer, and educator.

Call for proposal

H2020-MSCA-IF-2020
See other projects for this call

Funding Scheme

MSCA-IF-EF-ST - Standard EF

Coordinator

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Address
Batiment Ce 3316 Station 1
1015 Lausanne
Switzerland
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 203 149,44