Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Theoretical beamlines to time-resolved ultrafast Auger electron spectroscopy

Project description

A closer and clearer look at dynamical processes on the surface of materials

Understanding the elemental composition of the surfaces of materials is critical to numerous fields. Auger electron spectroscopy has become one of the most important non-destructive tools to detect the presence of specific elements at surfaces and interfaces. Bombarding the sample with a high-energy focused electron beam causes excited atoms to emit so-called Auger electrons with discrete kinetic energies characteristic of the emitting atom. A snapshot is great, but a movie is better. Getting a good handle on temporal processes has been a challenge. The EU-funded TR-AES project is applying advanced mathematical methods to enable the simulation of time-resolved Auger electron spectroscopy, boosting current applications and opening the door to new ones.

Objective

A novel application of a multicentric linear combination of atomic orbitals (LCAO) B-spline method to the accurate evaluation of resonant and non-resonant (time-resolved) Auger electron spectroscopy (AES) is proposed. The approach will combine equation-of-motion Coupled Cluster (EOM-CC) as well as complete active space self-consistent field (CASSCF) methods for the treatment of the bound states with the LCAO B-spline methodology to account for the outgoing electron and, thus, accurately address AES. Time-resolved Auger spectra will be simulated by incorporating our methodology with state-of-the-art nuclear dynamics approaches, such as multiconfiguration time-dependent Hartree method for the wave packet propagation and surface-hopping mixed quantum-classical dynamics.
The development of cutting-edge theoretical and simulation tools for time-resolved ultrafast AES, presented in this proposal, will leverage the current and future experimental efforts on time-resolved AES in many laboratories and at large-scale facilities around the world, such as the European XFEL.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2020

See all projects funded under this call

Coordinator

DANMARKS TEKNISKE UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 219 312,00
Address
ANKER ENGELUNDS VEJ 101
2800 KONGENS LYNGBY
Denmark

See on map

Region
Danmark Hovedstaden Københavns omegn
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 219 312,00
My booklet 0 0