Project description
Wearable sensors detect hypothermia in elderly patients
Older adults are vulnerable to hypothermia. An exceptionally low body temperature for an older person can cause many health problems ranging from a heart attack to liver damage or worse. For this reason, it is important to monitor hypothermia in the elderly. Wearable sensors could help provide long-term continuous recordings of electrophysiological activity to detect hypothermia at early stages. The EU-funded WEARSENSNANO project will develop an integrated wearable temperature and pressure/strain sensor based on solution processable nanowires and cellulose hydrogel to monitor hypothermia in the elderly and improve patient outcomes.
Objective
One common influence of ageing is that it makes the individual susceptible to hypothermia, which is known to be death causing low body temperature (35°C). Hypothermia could be detected at early stages by monitoring various physiological parameters such as ECG signal, skin temperature and body movement. Owing to their flexibility and stretchability, wearable sensors could provide long term continuous recordings of electrophysiological activity for monitoring hypothermia in elder people.
Wearable temperature, pressure and strain sensors in forms were studied by many research groups. Those approaches utilized complex and high-cost photolithography techniques, which makes the devices far from commercialization. Besides, the poor processability and lack of skin compatibility of stretchable polymers used as substrates prevents the practical use of these materials. However, solution-processable nanomaterials offer a unique way to reduce the cost and complexity, while cellulose hydrogel is easy processable and skin friendly polymer.
Thus, in this project, we aim to develop an integrated wearable temperature and pressure/strain sensor based on solution processable nanowires, and cellulose hydrogel to monitor hypothermia in elder people via measuring pressure, strain and temperature. Pressure/Strain sensor will be prepared via laminating two silver nanowire printed cellulose hydrogels sandwiching a pressure sensitive dielectric layer. Temperature sensor will be fabricated via transfer printing of gold nanowires on the cellulose hydrogel substrate. Next, pressure/strain and temperature sensors will be laminated to form the integrated sensor. Finally, the sensors will be used in real patients.
In terms of research quality, infrastructure and services, Prof. Vapaavuori’s lab and Aalto University are quite appropriate for the proposed project. The training is believed to strongly contribute to the researcher’s academic, and scientific career.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences polymer sciences
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- engineering and technology medical engineering wearable medical technology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
02150 Espoo
Finland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.