Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS

Solar Fuel Generation through Photoelectrochemical Reduction of CO2 Using Copper Porphyrins in Molecularly Designed Reaction Environments

Project description

Closing the carbon cycle with rational design of CO2-to-fuel converters

Since methane and other hydrocarbon fuel combustion generates CO2 emissions, capturing these emissions to produce fuels closes a circle and advances us toward a carbon-neutral paradigm. Recycling CO2 and H2O into methane has conventionally required very high temperatures and reaction conditions. Recently, solar-powered CO2 conversion into fuel using solar-powered thin-film semiconductor devices has been garnering increasing attention. Molecular photocatalysts provide significant advantages over inorganic ones, but mechanisms of charge transfer are poorly understood. The EU-funded SolTIME project will develop an innovative photocatalytic system that will also help scientists elucidate mechanisms leading to rational design and new horizons.

Objective

Solar fuels can be synthesized by integrating electrocatalysts with semiconductors, using sunlight to drive endergonic chemical reactions. Employing molecular electrocatalysts allows the tunability, selectivity, and three-dimensional architectures associated with molecular components to be combined with the solar energy capture and conversion properties of solid-state semiconducting materials. However, there is a lack of understanding of how photo-generated carriers are transported through these systems, disfavouring the rational design of efficient photoelectrocatalytic constructs. This proposal aims to interface copper porphyrins with built-in hydroxyl groups, known catalysts for CO2 reduction, to carbon nitride for photo-promoted generation of highly reduced products from CO2, including methane and ethanol. Catalytic activity and selectivity will be studied by using multi-dimensional approaches for porphyrin immobilization, drawing inspiration from the extended coordination spheres crucial in biological tuning of enzymatic activity. This will be achieved through synthesis of three distinct reaction environments at carbon nitride consisting of: a porphyrin monolayer, a polymer film coordinating the porphyrin, and a 2-D highly ordered covalent-organic framework (COF) composed of the porphyrin. It is expected that these specialised environments will give rise to distinct kinetic responses and product distribution. Existing electrochemical models will be extended to this photoelectrochemical data to investigate the interplay of light flux, substrate and electron diffusion, and catalytic rates, leading to the extrapolation of fundamental principles governing interfacial photo-induced charge transfer at catalytic thin films. Through this project, leadership training, language acquisition, and communication skills will be emphasized, furthering the experienced researcher’s career goals and preparing her for an independent career in solar fuels.

Coordinator

FUNDACIO PRIVADA INSTITUT CATALA D'INVESTIGACIO QUIMICA
Net EU contribution
€ 172 932,48
Address
AVENIDA PAISSOS CATALANS 16
43007 Tarragona
Spain

See on map

Region
Este Cataluña Tarragona
Activity type
Research Organisations
Links
Total cost
€ 172 932,48