Skip to main content
European Commission logo print header

Multi-physics Modelling of Erosive Impact of Particles on Wind Turbine Blades

Project description

A novel computational approach to modelling wind turbine damage by incident particles

Funded by the Marie Skłodowska-Curie Actions programme, the PARTIMPACT project will pioneer a multi-physics computational framework to accurately model the damage caused to wind turbine blades by solid and liquid particles. This new approach, which is a better alternative to state-of-the-art semi-empirical computational fluid dynamics approaches, should increase understanding of the erosion impact of incident particles such as hailstones or rain droplets. Project findings will have far-reaching implications: from reducing wind energy costs to meet the EU target of 240–450 GW wind power by 2050 to raising public awareness of the importance of wind energy and ageing infrastructure asset management.

Objective

"The main focus of this proposal is to accurately model the damage to the wind turbine blades due to impacts by solid (e.g. hailstone) or liquid (e.g. rain droplet) ""particles"". The applicant will pioneer a new multi-physics computational framework to transform the current semi-empirical computational fluid dynamics (CFD)-based approaches. This new research tool will then be used to answer the main research question which is to understand the dynamical role of impinging particles – liquid or solid – in the erosion process, enabling quantitative prediction of the erosive impact of particles and mass removal rate from the surfaces. The main modeling challenge is to present both solid and liquid particles in a unified theoretical framework. Therefore, the applicant will develop a generalised peridynamics theory to predict the damage by both solid and liquid particles and implement it in a validated opensource Software platform. The applicant will collaborate with Strathclyde University (STRATH) and the Manufacturing Technology Centre (MTC) to deliver the objectives, expand his professional network, and exchange knowledge with industrial stakeholders.
The impact of the project is far-reaching: from reducing the costs of wind energy by preventing catastrophic turbine failure to meet the EU target of 240-450 GW of wind energy by 2050, to increasing public awareness on the importance of wind energy and asset management of aging infrastructures.
The host (University of Edinburgh), the supervisor, and the project partners STRATH and the MTC are dedicated to the research and will provide all the necessary equipment, software licenses, and office space so ensure the delivery of the objectives. Furthermore, they will provide training in the required technical and soft skills to prepare the applicant to become a leader in modeling erosion due to particle impact, particle-laden and multiphase flow systems, and more broadly in wind energy."

Coordinator

THE UNIVERSITY OF EDINBURGH
Net EU contribution
€ 224 933,76
Address
OLD COLLEGE, SOUTH BRIDGE
EH8 9YL Edinburgh
United Kingdom

See on map

Region
Scotland Eastern Scotland Edinburgh
Activity type
Higher or Secondary Education Establishments
Links
Total cost
€ 224 933,76