Project description
Charged excitons pave the way to more efficient quantum technologies
Transition metal dichalcogenide (TMD) monolayers are atomically thin semiconductors that are deemed promising platforms for quantum information technologies as they host ‘valleys’ as quantum degrees of freedom that can serve as qubits. Controlling the polarisation of the light that excitons generate inside these semiconductors could lead to more efficient quantum devices. Funded by the Marie Skłodowska-Curie Actions programme, the 2DCHEX project plans to create an electro-optical interface by doping TMD monolayers. The electric double layers should control charged exciton formation, while complex nanoantennas should enhance collimated beam emission. The ultimate goal is to develop a bright, directional and electrically tuneable quantum device operating at room temperature that could render quantum computing and information technologies more efficient.
Objective
Transition metal dichalcogenide (TMD) monolayers constitute an attractive material platform due to additional degrees of freedom in encoding and processing quantum information. Currently, the use of these degrees of freedom in valleytronics is hampered due to the low valley polarization of the neutral exciton at room temperature. Recently, charged excitons have been demonstrated to exhibit high valley polarization even at room temperature albeit with low quantum yield and have a need for sophisticated charge doping techniques. This action proposes a novel electro-optical interface based on electron doping of TMD monolayers. I suggest to use the electric double layers to control the formation of charged excitons, and to use complex nanoantennas to enhance and collimate generated emission. My goal is to develop a quantum device merging fields of electrochemistry, photonics, plasmonics and TMD materials, giving practical access to new degrees of freedom for future valleytronic applications. The objectives are to demonstrate the exciton charging in TMD monolayers using a custom-built electrochemical cell and to tune electrically charged-exciton emission through the manipulation of the Fermi level, i.e. chemical potential. I aim to use the tuning of emission energy for coupling the charged exciton with a narrow resonance of a complex nanoantenna. This antenna will increase the extraction efficiency by directing the emission of charged excitons and enhancing their generation rate. Furthermore, I aim to explore the chirality of valley polarization and address the emission of charged excitons for their directional coupling with plasmons in high quality wedge waveguides based on crystalline gold micro-flakes. The overarching aim of my action is the development of a novel bright, directional, and electrically tunable quantum emitting device operating at room temperature for future quantum computing and information technologies.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences condensed matter physics quasiparticles
- natural sciences chemical sciences electrochemistry
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
5230 Odense M
Denmark
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.