Description du projet
L’intelligence artificielle au service de prévisions saisonnières avancées
Les prévisions saisonnières sont des instruments de prévision climatique qui permettent de prévenir les risques liés aux conditions météorologiques extrêmes. Si les progrès récents des méthodes statistiques et de la modélisation numérique ont amélioré les performances des prévisions saisonnières, leur utilité reste souvent limitée, en particulier dans les latitudes moyennes. Le projet ARTIST, financé par l’UE, permettra de mieux appréhender la prédictibilité du climat à l’échelle saisonnière, afin d’améliorer les performances des systèmes de prévision actuels. Le projet concevra un modèle hybride statistique et dynamique, synthétisant un système de prévision saisonnière dynamique de pointe et un modèle statistique reposant sur des techniques avancées d’apprentissage automatique, en se concentrant sur la prévision saisonnière des extrêmes de température en Europe. Ce modèle hybride combinera le fondement théorique et l’interprétabilité de la modélisation physique avec les relations prédictives spatiotemporelles identifiées par l’intelligence artificielle.
Objectif
Seasonal Forecasts are critical tools for early-warning decision support systems, that can help reduce the related risk associated with hot or cold weather and other events that can strongly affect a multitude of socio-economic sectors. Recent advances in both statistical approaches and numerical modeling have improved the skill of Seasonal Forecasts. However, especially in mid-latitudes, they are still affected by large uncertainties that make their application often complicated.
The ARTIST project aims at improving our knowledge of climate predictability at the seasonal time-scale, focusing on the role of unexplored drivers, to finally enhance the performance of current prediction systems. This effort is meant to reduce uncertainties and make forecasts efficiently usable by regional met-services and private bodies. A statistical/dynamical hybrid model will be designed through the synthesis of (a) a cutting-edge dynamical Seasonal Prediction System and (b) a statistical model based on advanced Machine Learning (ML) techniques. Such a hybrid approach may become critical to improve climate forecasts, because it combines the theoretical foundation and interpretability of physical modeling with the power of Artificial Intelligence (AI), that can reveal unknown or disregarded spatio-temporal features.
ARTIST will focus on seasonal prediction of temperature hot/cold extremes in Europe, but its scalable nature can make it applicable across a wide range of variables and geographical areas. Besides the employment of AI, a strength of the action stands in the use of local land surface predictors to instruct the empirical model.
The fellowship, which includes a variety of training activities, will be mainly conducted at the Barcelona Supercomputing Centre (Spain), a world-renowned institute for climate predictions and applications. A secondment period is projected at the Max Planck Institute for BGC (Germany), prominent in land studies and ML employment in earth science.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- sciences naturelles informatique et science de l'information intelligence artificielle apprentissage automatique apprentissage profond
- sciences sociales économie et affaires entreprise et gestion emploi
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) H2020-MSCA-IF-2020
Voir tous les projets financés au titre de cet appelCoordinateur
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
08034 BARCELONA
Espagne
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.