Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Uncovering and understanding differences in health behaviours in people with diabetes

Project description

Machine learning identifies risk factors for diabetes

Diabetes affects millions of individuals worldwide, and the inability to effectively manage blood glucose levels leads to various comorbidities such as obesity and cardiovascular disease. Therefore, it is important to understand patient characteristics and develop health interventions that stimulate positive health behaviour changes. To achieve this, the EU-funded CASCARA project will employ a multi-parametric approach that includes machine learning to identify specific characteristics capable of predicting how patients respond to diabetes diagnosis. Researchers will use observational data to determine the impact of gender and socioeconomic and demographic status on the adoption of a healthy lifestyle that involves a well-balanced diet and physical activity.

Objective

Diabetes causes a large and unevenly distributed health and economic burden within the population living with diabetes. Improved health behaviours have the potential to avert a large share of morbidity and mortality attributable to diabetes. However, adherence to recommended self-management remains challenging for many patients. This may (at least partly) explain the large overall disease burden in people with diabetes, as well as how that burden is distributed among patients. A better understanding of the patient and community level characteristics that affect behaviour change can inform more personalised, more effective health interventions that stimulate positive health behaviour changes, in turn reducing the overall burden associated with diabetes.
CASCARA aims to provide novel and much needed evidence on characteristics predictive of (1) health behaviour change subsequent to a diabetes diagnosis and (2) of the resulting changes in diabetes complication risk factors. To achieve this, I will use causal econometric and epidemiologic methods as well as machine learning (ML) and causal mediation analysis. The commonly recommended behaviour changes I focus on comprise: improving diet, increasing physical activity, reducing smoking and alcohol consumption. In particular, CASCARA will address the following research objectives using longitudinal observational data from continental Europe, the UK and the US:
1. Investigate the effect of a diabetes diagnosis on health behaviours and potential heterogeneities across gender and socioeconomic status
2. Use of ML to identify potentially unanticipated socioeconomic, demographic and clinical characteristics affecting health behaviour change, for a more detailed understanding of its potential drivers
3. Use causal mediation analysis to identify the impact of different health behaviour changes on risk factors for diabetes complications (body mass index, hypertension status and blood glucose levels) post-diabetes diagnosis.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-WF-2018-2020

See all projects funded under this call

Coordinator

LISER - LUXEMBOURG INSTITUTE OF SOCIO-ECONOMIC RESEARCH
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 178 320,00
Address
11 PORTE DES SCIENCES CAMPUS BLEVAL
4366 Esch Sur Alzette
Luxembourg

See on map

SME

The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.

Yes
Region
Luxembourg Luxembourg Luxembourg
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 178 320,00
My booklet 0 0