Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Algorithmic Bias Control in Deep learning

Objective

"Deep Learning (DL) has reached unparalleled performance in many domains. However, this impressive performance typically comes at the cost of gathering large datasets and training massive models, requiring extended time and prohibitive costs. Significant research efforts are being invested in improving DL training efficiency, i.e. the amount of time, data, and resources required to train these models, by changing the model (e.g. architecture, numerical precision) or the training algorithm (e.g. parallelization). Other modifications aim to address critical issues, such as credibility and over-confidence, which hinder the implementation of DL in the real world. However, such modifications often cause an unexplained degradation in the generalization performance of DL to unseen data. Recent findings suggest that this degradation is caused by changes to the hidden algorithmic bias of the training algorithm and model. This bias selects a specific solution from all solutions which fit the data. After years of trial-and-error, this bias in DL is often at a ""sweet spot"" which implicitly allows ANNs to learn well, due to unknown key design choices. But performance typically degrades when these choices change. Therefore, understanding and controlling algorithmic bias is the key to unlocking the true potential of deep learning.

Our goal is to develop a rigorous theory of algorithmic bias in DL and to apply it to alleviate critical practical bottlenecks that prevent such models from scaling up or implemented in real-world applications.

Our approach has three objectives: (1) identify the algorithmic biases affecting DL; (2) understand how these biases affect the functional capabilities and generalization performance; and (3) control these biases to alleviate critical practical bottlenecks. To demonstrate the feasibility of this challenging project, we describe how recent advances and concrete preliminary results enable us to effectively approach all these objectives."

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2021-STG

See all projects funded under this call

Host institution

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 500 000,00
Address
SENATE BUILDING TECHNION CITY
32000 Haifa
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 500 000,00

Beneficiaries (1)

My booklet 0 0