Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Algorithmic Bias Control in Deep learning

Obiettivo

"Deep Learning (DL) has reached unparalleled performance in many domains. However, this impressive performance typically comes at the cost of gathering large datasets and training massive models, requiring extended time and prohibitive costs. Significant research efforts are being invested in improving DL training efficiency, i.e. the amount of time, data, and resources required to train these models, by changing the model (e.g. architecture, numerical precision) or the training algorithm (e.g. parallelization). Other modifications aim to address critical issues, such as credibility and over-confidence, which hinder the implementation of DL in the real world. However, such modifications often cause an unexplained degradation in the generalization performance of DL to unseen data. Recent findings suggest that this degradation is caused by changes to the hidden algorithmic bias of the training algorithm and model. This bias selects a specific solution from all solutions which fit the data. After years of trial-and-error, this bias in DL is often at a ""sweet spot"" which implicitly allows ANNs to learn well, due to unknown key design choices. But performance typically degrades when these choices change. Therefore, understanding and controlling algorithmic bias is the key to unlocking the true potential of deep learning.

Our goal is to develop a rigorous theory of algorithmic bias in DL and to apply it to alleviate critical practical bottlenecks that prevent such models from scaling up or implemented in real-world applications.

Our approach has three objectives: (1) identify the algorithmic biases affecting DL; (2) understand how these biases affect the functional capabilities and generalization performance; and (3) control these biases to alleviate critical practical bottlenecks. To demonstrate the feasibility of this challenging project, we describe how recent advances and concrete preliminary results enable us to effectively approach all these objectives."

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

HORIZON-ERC - HORIZON ERC Grants

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2021-STG

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 1 500 000,00
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 1 500 000,00

Beneficiari (1)

Il mio fascicolo 0 0