Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Piezoelectric Biomolecules for lead-free, Reliable, Eco-Friendly Electronics

Objective

Billions of piezoelectric sensors are produced every year, improving the efficiency of many current and emerging technologies. By interconverting electrical and mechanical energy they enable medical device, infrastructure, automotive and aerospace industries, but with a huge environmental cost. The majority of piezoelectric sensors contain Lead Zirconium Titanate (PZT), the fabrication of which requires toxic lead oxide. Prominent lead-free alternatives are heavily processed, and rely on expensive, non-renewable materials such as Niobium.
Biological materials such as amino acids and peptides have emerged as exciting new piezoelectrics. Biomolecular-crystal assemblies can be grown at room temperature with no by-products, and do not require an external electric field to induce piezoelectricity, unlike PZT and other piezoceramics. Currently no research is focused on developing these crystals as reliable, solid-state sensors to integrate into conventional electronic devices, due to their high water solubility, uncontrolled growth, variable piezoelectric response, and difficulty in making electrical contact.
Pb-FREE will take on the ground-breaking challenge of developing biomolecular crystals as organic, low-cost, high-performance sensors, to out-perform and phase-out inorganic device components with dramatically reduced environmental impact. The project will rapidly accelerate the design, growth, and engineering of these novel piezoelectric materials under three pillars:
- An ambitious computational workflow will enable the design of super-piezoelectric crystalline assemblies by combining high-throughput quantum mechanical calculations with machine learning algorithms.
- A new method of growing polycrystalline biomolecules will be developed, allowing for easy, efficient creation of macroscopic piezoelectric structures.
- A state-of-the-art electromechanical testing suite will be established to characterise fully insulated and contacted biomolecular device components.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2021-STG

See all projects funded under this call

Host institution

UNIVERSITY OF LIMERICK
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 499 525,00
Address
NATIONAL TECHNOLOGICAL PARK, PLASSEY
- Limerick
Ireland

See on map

Region
Ireland Southern Mid-West
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 499 525,00

Beneficiaries (1)

My booklet 0 0