CORDIS - EU research results
CORDIS

Controlling chirality in atomically thin quantum electronic materials

Project description

Developing ultracompact and disruptive ‘chiral technologies’

Linking properties of elementary particles to those of molecules in chemistry and biology and electromagnetic responses of systems with non superimposable mirror images, chirality is a key concept in science. Exploring the potential of atomically thin quantum electronic materials is important for chiral engineering. Funded by the European Research Council, the CHIROTRONICS project aims to observe their chiral responses and demonstrate how they can be actively controlled to create enantioselective and non-reciprocal optical and electronic devices. By combining materials science and metrology, the project will pave the way for the development of ultracompact and disruptive ‘chiral technologies’ that have applications in areas such as biochemical sensing and quantum communications.

Objective

Chirality is a foundational and unifying topic in science. It relates properties of elementary particles, to those of molecules in chemistry and biology (e.g. sugars), as well as the electromagnetic responses of artificial systems with non-superimposable mirror images. Besides, chirality bears an extraordinary potential for modern engineering, despite of the current lack of large, robust and actively controlled chiral signals needed to develop new applications. The emergence of atomically thin quantum electronic materials with handedness has marked the ultimate twist in chirality. A wide variety of exotic and gigantic chiral phenomena are predicted to occur in these novel quantum systems. Moreover, these effects are expected to be actively controlled by local fields, and therefore useful for applications. Nonetheless, such responses have yet to be detected, are puzzling and bring in new conundrums that demand investigation. The purpose of CHIROTRONICS is two-fold. Firstly, the study aims to experimentally observe these striking chiral responses predicted to occur in chiral, atomically thin quantum electronic materials. Intriguingly, the exploration of these interdisciplinary effects will also contribute to shed light on central questions existing in many areas of knowledge where chirality is involved. Secondly, the project will demonstrate how chiral signals arising in these quantum materials can be actively controlled and enhanced by local fields, as well as harnessed to engineer a range of basic enantioselective and non-reciprocal optical and electronic devices. As such, CHIROTRONICS will pave the way to develop ultra-compact and disruptive 'chiral technologies', hardware components to be used in a myriad of novel applications including biochemical sensing or quantum communications. The project will achieve success by an integral approach to research, combining expertise from different disciplines, including materials science and metrology.

Host institution

UNIVERSIDAD DE SALAMANCA
Net EU contribution
€ 1 799 250,00
Address
CALLE PATIO DE ESCUELAS 1
37008 Salamanca
Spain

See on map

Region
Centro (ES) Castilla y León Salamanca
Activity type
Higher or Secondary Education Establishments
Links
Total cost
€ 1 799 250,00

Beneficiaries (1)