Objective
I propose a novel membrane-like device that utilizes a ratchet mechanism to drive ions selectively up a concentration gradient. This device can serve as a building block for an efficient, ion selective separations technology.
Ion selective separation with membrane-based processes may advance dramatically technologies for water treatment, resource extraction from sea water, ion specific sensors and many other applications. Moreover, since about 10-15% of the global energy consumption is used for chemical separations, a high efficiency, membrane-based ion separation processes can reduce greenhouse gas emissions significantly. However, membrane-based ion selective separation is a longstanding unmet challenge in science and engineering. Although conventional membrane-based separation is extremely efficient in unselective separation processes such as reverse osmosis water desalination, membrane-based processes showed limited success in ion specific separations. Furthermore, the need for a molecular level control of the membrane properties, limits the scalability of most of the membrane-based ion selective separation techniques that are currently being studied.
Our proposed device, the ratchet-based ion pump, is driven with a ratchet mechanism which utilizes modulations of a spatially asymmetric electric field to induce a non-zero net ion flux up a concentration gradient. We will utilize a fundamental ratchet process in which the ratchet input signal drives particles with the same charge but different transport properties in opposite directions, to design highly selective, fit-to-purpose, and real-time controlled ion separation systems thereby bypassing the limitations faced by current technologies.
In this research we will combine theory, simulation and experiment to improve our understanding of the ratchet mechanism, design and optimize ratchet based ion pumps, demonstrate ion selective ratchet-based separation systems, and set their thermodynamic performance limits
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- engineering and technology chemical engineering separation technologies desalination
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
69978 Tel Aviv
Israel
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.