Objective
Network analysis has revolutionized our understanding of complex systems, and graph-based methods have emerged as powerful tools to process signals on non-Euclidean domains via graph signal processing and graph neural networks. The graph Laplacian and related matrices are pivotal to such analyses: i) the Laplacian serves as algebraic descriptor of the relationships between nodes; moreover, it is key for the analysis of network structure, for local operations such as averaging over connected nodes, and for network dynamics like diffusion and consensus; ii) Laplacian eigenvectors are natural basis-functions for data on graphs and endowed with meaningful variability notions for graph signals, akin to Fourier analysis in Euclidean domains. However, graphs are ill-equipped to encode multi-way and higher-order relations that are becoming increasingly important to comprehend complex datasets and systems in many applications, e.g. to understand group-dynamics in social systems, multi-gene interactions in genetic data, or multi-way drug interactions.
The goal of this project is to develop methods that can utilize such higher-order relations, going from mathematical models to efficient algorithms and software. Specifically, we will focus on ideas from algebraic topology and discrete calculus, according to which the graph Laplacian can be seen as part of a hierarchy of Hodge-Laplacians that emerge from treating graphs as instances of more general cell complexes that systematically encode couplings between node-tuples of any size. Our ambition is to i) provide more informative ways to represent and analyze the structure of complex systems, paying special attention to computational efficiency; ii) translate the success of graph-based signal processing to data on general topological spaces defined by cell complexes; and iii) by generalizing from graphs to neural networks on complexes, gain deeper theoretical insights on the principles of graph neural networks as special case.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
52062 Aachen
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.