Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Superconducting qubits with 1 second coherence time using rotation codes

Objective

Quantum computers use highly entangled qubits to achieve their exceptional computational power. However, the qubits also easily entangle with their environment, leading to errors. Future quantum computers can be protected against such errors by encoding each logical qubit redundantly in thousands of physical qubits. This daunting overhead can be reduced exponentially by improving the quality of the physical qubits. We can also replace the two-level physical qubits with cavities, which are described by continuous variables. This built-in redundancy can further reduce the overhead for fault-tolerant quantum computation.

In this proposal, I aim to develop a qubit based on superconducting cavities with a coherence time of 1 second - three orders of magnitude higher than the current state of the art. I will achieve this goal by tackling the problem of errors in quantum computers on three fronts. The first front is developing a qubit with suppressed intrinsic loss mechanisms by harnessing recent developments in cavities for particle accelerators. The second is using quantum control to mitigate the effect of dominant error mechanisms. In the final front, we will develop and implement bosonic rotation codes, a novel blueprint for quantum error correction tailored to the error structure of the cavity qubit. These codes are unique in that they treat photon loss errors and phase noise errors on equal footing.

My proposal requires a radical rethinking of the cavity design, its interaction with quantum circuits, and how quantum information is encoded and manipulated. It combines advances in quantum information science, superconductivity, and materials science. Beyond providing a novel approach to quantum computing, the proposal will impact a broad range of fields ranging from quantum-enhanced sensing to the simulation of photochemical reactions.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2021-STG

See all projects funded under this call

Host institution

WEIZMANN INSTITUTE OF SCIENCE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 275 797,50
Address
HERZL STREET 234
7610001 Rehovot
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 275 797,50

Beneficiaries (1)

My booklet 0 0