Objective
Brain function depends on spatiotemporally defined brain-wide signaling via molecules such as neurotransmitters. No current technology can measure signaling molecules throughout the brain with sufficient spatial and temporal resolution in living mammals. This poses a major roadblock for understanding how molecular neuronal communication coordinates whole-brain function.
Magnetic resonance imaging (MRI) currently provides the highest brain-wide resolution. Dynamic imaging of blood flow and oxygenation in the finely arborized vasculature, so-called functional MRI (fMRI), is the only method that can visualize whole-brain function in mammals and humans. However, MRI is inherently insensitive, which precludes it from accessing molecular signaling that occurs at (sub)micromolar concentrations and fMRI cannot resolve neurotransmitter signaling underlying measured hemodynamic signals.
I previously designed protein-based vasoactive sensors, named AVATar, that directly cause hemodynamic signals in fMRI in response to target molecules at low nanomolar doses, without using radioactive or metallic components. They can be genetically encoded and also pave the way for noninvasive brain delivery through the vasculature, critical for translational applications in primates and humans.
Here, I will combine my expertise in synthetic biology and in vivo molecular imaging to develop my proof-of-concept work into a robust preclinical neuroimaging method along three objectives:
1) Engineering AVATars that convert neurotransmitter signaling into hemodynamic signals.
2) Brain delivery via non-invasive routes.
3) Application for fMRI of brain-wide neurotransmitter signaling in rodents.
My project will provide neurotransmitter-sensing AVATars to turn fMRI into molecular fMRI and bridge the long-standing gap between molecular nuclear imaging and functional hemodynamic imaging. AVATars will visualize how brain-wide molecular signaling dynamics shape healthy and pathological brain function.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences zoology mammalogy primatology
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80539 MUNCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.