Description du projet
Faire la lumière sur la boîte noire des algorithmes bayésiens pour les mégadonnées
L’analyse bayésienne, une méthode d’inférence statistique qui applique les probabilités pour actualiser notre croyance sur le modèle en fonction des observations, est fondamentale pour de nombreux algorithmes statistiques et d’apprentissage automatique dédiés aux mégadonnées. Elle favorise la compréhension des processus dans le cadre de problèmes complexes, notamment l’évaluation du changement climatique et le suivi de la propagation d’une maladie. Cependant, les méthodes bayésiennes atteignent leurs limites face à l’explosion des données disponibles, et les tentatives d’accélération du traitement sont en grande partie des solutions de type «boîte noire». Le projet BigBayesUQ, financé par l’UE, développe une théorie pour les méthodes bayésiennes évolutives qui permet de quantifier les performances, les limites et l’incertitude. Ceci améliorera la précision et le soutien ultérieur d’une large communauté de scientifiques et de chercheurs.
Objectif
Recent years have seen a rapid increase in available information. This has created an urgent need for fast statistical and machine learning methods that can scale up to big data sets. Standard approaches, including the now routinely used Bayesian methods, are becoming computationally infeasible, especially in complex models with many parameters and large data sizes. A variety of algorithms have been proposed to speed up these procedures, but these are typically black box methods with very limited theoretical support. In fact empirical evidence shows the potentially bad performance of such methods. This is especially concerning in real-world applications, e.g. in medicine. In this project I shall open up the black box and provide a theory for scalable Bayesian methods combining recent, state-of-the-art techniques from Bayesian nonparametrics, empirical process theory, and machine learning. I focus on two very important classes of scalable techniques: variational and distributed Bayes. I shall establish guarantees, but also limitations, of these procedures for estimating the parameter of interest, and for quantifying the corresponding uncertainty, within a framework that will also convince outside of the Bayesian paradigm. As a result, scalable Bayesian techniques will have more accurate performance, and also better acceptance by a wider community of scientists and practitioners. The proposed research, although motivated by real world problems, is of a mathematical nature. In the analysis I consider mathematical models, which are routinely used in various fields (e.g. high-dimensional linear and logistic regressions are the work horses in econometrics or genetics). My theoretical results will provide principled new insights that can be used, for instance in multiple specific applications I am involved in, including developing novel statistical methods for understanding fundamental questions in cosmology and the early detection of dementia using multiple data sources.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
La classification de ce projet a été validée par l'équipe qui en a la charge.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
La classification de ce projet a été validée par l'équipe qui en a la charge.
- sciences naturelles informatique et science de l'information science des données mégadonnées
- sciences naturelles mathématiques mathématiques appliquées statistique et probabilité statistique bayésienne
- sciences naturelles informatique et science de l'information intelligence artificielle apprentissage automatique
- sciences naturelles mathématiques mathématiques appliquées modèle mathématique
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
HORIZON.1.1 - European Research Council (ERC)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
HORIZON-ERC - HORIZON ERC Grants
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) ERC-2021-STG
Voir tous les projets financés au titre de cet appelInstitution d’accueil
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
20136 Milano
Italie
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.