Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Correspondences in enumerative geometry: Hilbert schemes, K3 surfaces and modular forms

Objetivo

Enumerative geometry is concerned with counting geometric objects on spaces defined by polynomial equations. The subject, which has roots going back to the ancient Greeks, was revolutionized by string theory in the 90s and has since become a fundamental link between algebraic geometry, representation theory, number theory and physics. With K3Mod I propose to establish a wide range of new correspondences in enumerative geometry. These link together different enumerative theories and open new perspectives to attack long-standing problems concerning the quantum cohomology of the Hilbert scheme of points on surfaces, modular properties of invariants of K3 surfaces, string partition functions of Calabi-Yau threefolds with links to Conway Moonshine, and a major case of the Crepant Resolution Conjecture.

The geometry of the Hilbert scheme of points on a surface will play a central role. I aim to prove a correspondence between its Gromov-Witten theory, and the Donaldson-Thomas theory of certain threefold families. Correspondences for moduli spaces of Higgs bundles and the orbifold theory of the symmetric product of surfaces will be considered as well. This provides methods to prove that Gromov-Witten invariants of Hilbert schemes of points on K3 surfaces are Fourier coefficients of quasi-Jacobi forms, possibly leading to a complete solution of their enumerative geometry. After elliptic curves, K3 surfaces form the simplest Calabi-Yau geometry for which a complete understanding of the Gromov-Witten theory is in reach. For elliptic threefolds, I will study the relationship of their Donaldson-Thomas invariants with quasi-Jacobi forms, using both degeneration techniques and wallcrossing formulae.

The research goals of this proposal will lead to exciting new connections between geometry, modular forms, and representation theory. The results will provide a clear understanding of the interplay between Hilbert schemes, K3 surfaces, and modularity in enumerative geometry.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

HORIZON-ERC - HORIZON ERC Grants

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) ERC-2021-STG

Ver todos los proyectos financiados en el marco de esta convocatoria

Institución de acogida

RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 1 296 705,00
Dirección
SEMINARSTRASSE 2
69117 Heidelberg
Alemania

Ver en el mapa

Región
Baden-Württemberg Karlsruhe Heidelberg, Stadtkreis
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 1 296 705,50

Beneficiarios (1)

Mi folleto 0 0