Objective
Quantum computers face many bottlenecks towards upscaling the number of qubits and increasing their computational power. One of them is the radio frequency (RF) -bottleneck between the qubit processor inside the cryostat and the room temperature control and readout electronics. And like for their classical counterparts, hope lies in replacing the RF-links by optical fibers, resulting in a hybrid situation where RF-qubits will be used for computation and optical qubits will serve for remote communication. However, electro-optical (EO) devices that parametrically amplify RF-qubits directly to optical qubits and vice versa have thus far remained elusive.
Q-Amp will demonstrate a new class of EO-amplifiers that realize the required unity efficiency to achieve this goal. This is impossible with current EO-architectures which suffer from a deleterious trade-off between EO interaction strength (g) and EO losses (Q-factors). This originates from their device design and enhancing g requires bringing the RF-superconducting circuit in close vicinity of the optical waveguide, which comes at the expanse of excess EO losses. To cope with this, we will pioneer a transparent EO device technology that enhances g without the need of bringing superconductors and optical waveguides in close vicinity of each other. We will do so by concentrating the RF- and the optical field in the same nanoscale interaction volume via dipolar screening in ferroelectrics and/or ballistic transport in graphene. Confining both fields within next generation EO-materials will enable an increase of g from 100s of Hz (prior art) to Megahertz-levels. Simultaneously, light is kept away from the lossy superconducting electrodes enabling moderate Q-values of 1E5..1E6.
Q-amp’s EO-amplifiers will finally overcome the scaling limitations of current superconducting quantum computers and will provide classical superconducting supercomputers with high-speed EO gateways they desperately need.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering fibers
- engineering and technology nanotechnology nano-materials two-dimensional nanostructures graphene
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware supercomputers
- natural sciences physical sciences electromagnetism and electronics superconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3001 Leuven
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.