Project description
Modelling colloids to understand geologic flows
Colloids, mixtures where one substance is dispersed in tiny particles throughout another, are found throughout the natural world. They include gels, sols and emulsions; even viruses and bacteria can be considered colloids. The EU-funded COCONUT project aims to develop new prediction tools that explain how colloids can control immiscible two-phase flows in complex geological formations. Nanoparticle colloids have the potential to remobilise trapped particles beneath the surface, such as in contaminated groundwater or oil deposits. The project will combine hydro-electro-chemical modelling and microfluidic experiments which focus on pore-scale mechanisms of flows and the upscaling of these to a continuum-scale. The end goal is to demonstrate how colloids can control a two-phase flow in geological systems at the column-scale.
Objective
The COCONUT project aims at developing predictive capabilities to understand how colloids (nanometals, fine particles, bacteria, viruses, asphaltenes..) control immiscible two-phase flow in complex geological formations. Colloids (including nanoparticles) have an incredible potential to remobilize non-aqueous phases trapped by capillary forces in soils and the subsurface, and then to remediate contaminated groundwater or to enhance oil recovery. Their use in daily engineering, however, is still underexploited because the lack of knowledge regarding their transport mechanisms is an obstacle to precise control of two-phase flow. Importantly, the presence of colloidal particles flowing in the subsurface challenges the standard modeling viewpoint of flow and transport based on Darcy's law. We posit that the precise control of colloids on the motion of two-phase flow can only be achieved by developing a deep knowledge of the coupled hydro-electro-chemical processes at the pore-scale. The COCONUT project uses a combined modelling-experimental strategy focusing on the pore-scale mechanisms and on the upscaling to the continuum-scale. The project is multi-disciplinary and uses computational and experimental sciences, fluid dynamics, electrochemistry, and mathematics. The project will require the development of hydro-electro-chemical computational models at different scales of interest (WP1). We will use high-resolution simulations to interrogate emergent physico-chemical processes and characterize the surface attractive and repulsive forces at the nanoscale (WP2). Then, we will decipher the mechanisms leading to the displacement of fluids trapped in an unsaturated porous medium in the presence of colloids using pore-scale modelling and microfluidic experiments (WP3). Finally, we will demonstrate and optimize the two-phase flow colloidal control in geological systems at the column-scale (WP4).
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences electrochemistry
- natural sciences biological sciences microbiology bacteriology
- natural sciences biological sciences microbiology virology
- natural sciences physical sciences condensed matter physics soft matter physics
- engineering and technology nanotechnology nano-materials
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.