Project description
New method could help reveal ion dynamics in porous nanomaterials
Studying molecular and ion transport in porous materials is of paramount importance for many fields, ranging from energy storage and transformation to separation technologies. Nanoconfinement effects change the ion properties and can be leveraged to enhance the performance of energy storage devices. Although the static properties of confined ions in nanopores can be easily studied, little is known about their dynamic properties owing to the lack of suitable experimental systems. The EU-funded DYONCON project will use well-defined, tuneable model systems to study the dynamic properties of confined ions. The concept involves combining two exclusive material classes: ionic liquids and films of metal-organic frameworks.
Objective
Transport phenomena of molecules and ions inside porous materials are paramount in various fields, ranging from energy storage and transformation to molecular separation. In advanced energy storage devices, like supercapacitors and batteries, ions are confined in small pores. Nanoconfinement effects change the ion properties and enhance the performance, vital for saving resources and energy. So far, the static properties of nanoconfined ions are thoroughly studied but there is little known about the dynamic properties of ions in nanopores, mainly attributed to the lack of suitable experimental model systems.
In DYONCON, the dynamic properties of nanoconfined ions will be explored by using well-defined, tunable model systems. This is realized by combining two exclusive material classes: ionic liquids, ILs, which are room-temperature molten salts of organic molecules, and films of metal-organic frameworks, MOFs. MOF films provide the variable, crystalline, scaffold-like container for the ion confinement. An applied electric field will act on the nanoconfined ILs, causing its directed movements. Controlling the dynamic properties of the nanoconfined ions will lead to myriad advances of safety and efficiency concerns, including enhanced charging rates of energy storage devices.
In a radical new approach, DYONCON will also show that nanoconfined ions provide unprecedented functionalities. Based on the functional uniformity of IL@MOF membranes, the nano-level control of the confined ions will be used to regulate macroscopic gas fluxes with ultrafast switching rates, orders of magnitude faster than conventional gas valves.
DYONCON aims to enhance the potentials of electrochemical technologies in energy storage, in sensors and in iontronics. The benefits of DYONCON will not only impact the improvement of speed, quality and control in existing technologies, but it will change the way we look at mobile confined ions and launch us into new methods of using nanomaterials.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- engineering and technology nanotechnology nano-materials
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
14195 BERLIN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.