Description du projet
De nouvelles plateformes de synthèse électrochimique de peptides déboucheront sur de robustes catalyseurs enzymatiques artificiels
Dans les environnements internes tempérés des organismes vivants, les catalyseurs de la nature (délicats enzymes protéiques) convertissent des petites molécules en d’autres pour diverses fonctions métaboliques cellulaires. Nombre de ces réactions sont pertinentes pour l’énergie, et les exploiter pour soutenir les processus de conversion dans l’optique de la transition vers les énergies renouvelables constituerait une alternative durable aux métaux précieux rares actuels. Cependant, le fonctionnement de ces enzymes délicates est altéré dans le contexte des conditions de fonctionnement extrêmes des piles à combustible ou des électrolyseurs. Le projet E-VOLUTION, financé par l’UE, utilisera les méthodes d’évolution dirigée déjà connues pour les acides aminés naturels et les conditions biologiques pour fabriquer des enzymes artificielles très actives et robustes à partir d’acides aminés naturels et artificiels.
Objectif
Global climate and energy challenges require efficient, robust and scalable catalysts for the conversion of renewable energies. Nature has evolved extremely active catalysts (enzymes) for the conversion of small molecules relevant to energy (H2, CO2, N2). The scalability of these enzymes offers distinct advantages over the rare, precious metals that are currently used in energy conversion. Unfortunately, the enzymes are unable to tolerate the extreme conditions of operating fuel cells or electrolyzers. Directed evolution is a powerful approach for improving enzymes, but is mostly restricted to natural amino acids and biological conditions, with limited compatibility for evolving enzymes toward enhanced resistance in abiotic systems. Here, I aim to establish directed evolution in fully abiotic systems, using artificial amino acids to make artificial enzymes that are stable even in extreme conditions. Towards this, I will establish new electrochemical peptide synthesis platforms to enable the generation of enzyme-length peptides using both natural and artificial amino acids. Extended libraries of artificial enzyme variants will be produced and screened directly on electrode microarrays. Top enzyme candidates for the conversion of H2 will be selected using fuel cell/electrolyzer conditions as the evolutionary criteria. By the end, I will have a new procedure for synthesizing libraries of full-length artificial proteins, enabling the creation of thousands of enzyme variants using artificial building blocks. The generation of high-quality datasets will be transformative to drive future machine learning-based evolution steps for both full size enzymes and small-molecule catalysts with applications beyond H2 evolution. We will have discovered highly active catalysts able to sustain conditions of large-scale energy conversion devices, accelerating breakthroughs toward the economically competitive use of renewable energies for fuel and chemical production.
Champ scientifique
- natural scienceschemical sciencescatalysis
- natural scienceschemical sciencesorganic chemistryamines
- engineering and technologyenvironmental engineeringenergy and fuelsfuel cells
- natural sciencesbiological sciencesbiochemistrybiomoleculesproteinsenzymes
- engineering and technologyenvironmental engineeringenergy and fuelsenergy conversion
Mots‑clés
Programme(s)
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Régime de financement
HORIZON-ERC - HORIZON ERC GrantsInstitution d’accueil
80333 Muenchen
Allemagne