Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Niche geometry as the regulator of communal metabolism and cell fate

Project description

The role of metabolites as a function of niche geometry in determining adult stem cell fate

Embryonic stem cells are perhaps most widely known to the public, but rare populations of adult stem cells are found in many adult tissues throughout the body. Unlike embryonic stem cells that can become any cell in the body, adult stem cells give rise to a limited number of mature cell types that build the tissue where they are found. These stem cells can also renew the stem cell pool. Metabolites within the stem cell micro-environment (niche) may influence stem cell fate. The EU funded Geometric fate project will investigate whether the geometry of the niche is the true regulator of stem cell fate through its effects on niche metabolism.

Objective

Tissue renewal by adult stem cells is regulated by a multitude of cell intrinsic and extrinsic mechanism, which jointly guide decisions between stem cell self-renewal and differentiation. Change between these two cellular fates is considered to result from transcriptional events that sequentially alter the function of the whole cell including its metabolism. However, recent findings by us and others demonstrate that metabolism can actually actively influence cell fate. Moreover, metabolites can be exchanged between neighbor cells in the stem cell niche, raising the question on how cell fate can be accurately controlled.

I hypothesize that fate of tissue stem cells is controlled by metabolism running jointly within the surrounding cellular community, and the geometry of the niche regulates stem cells via effects on this communal metabolism. In order to first identify metabolic pathways capable of altering cell fate, we will establish the exact order of metabolic and transcriptional events that distinguish the two daughters cells in the first hours after asymmetric cell division. Second, to assess the extent and impact of metabolite sharing in the stem cell niche, we will develop methods capable of detecting exchange of metabolites that are produced specifically in one cell type and used by others. Finally, to study the impact of niche geometry, we will develop artificial scaffolds instructing custom niche topology, and study the communal metabolism and stem cell fate regulation on tissue mimetic and non-physiologic niche geometries.

The work is enabled by our unique research tools allowing identification of cells with distinct fates based on the chronological age of organelles they inherit in cell division. Moreover, we study two stem cell systems with opposing dynamics, providing insights on general principles and increasing robustness of the study plan. Our work also has the potential to uncover metabolic tools advancing protocols for future cellular therap

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2021-COG

See all projects funded under this call

Host institution

HELSINGIN YLIOPISTO
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 617 155,00
Address
FABIANINKATU 33
00014 HELSINGIN YLIOPISTO
Finland

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 617 155,00

Beneficiaries (1)

My booklet 0 0