Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS

Niche geometry as the regulator of communal metabolism and cell fate

Project description

The role of metabolites as a function of niche geometry in determining adult stem cell fate

Embryonic stem cells are perhaps most widely known to the public, but rare populations of adult stem cells are found in many adult tissues throughout the body. Unlike embryonic stem cells that can become any cell in the body, adult stem cells give rise to a limited number of mature cell types that build the tissue where they are found. These stem cells can also renew the stem cell pool. Metabolites within the stem cell micro-environment (niche) may influence stem cell fate. The EU funded Geometric fate project will investigate whether the geometry of the niche is the true regulator of stem cell fate through its effects on niche metabolism.

Objective

Tissue renewal by adult stem cells is regulated by a multitude of cell intrinsic and extrinsic mechanism, which jointly guide decisions between stem cell self-renewal and differentiation. Change between these two cellular fates is considered to result from transcriptional events that sequentially alter the function of the whole cell – including its metabolism. However, recent findings by us and others demonstrate that metabolism can actually actively influence cell fate. Moreover, metabolites can be exchanged between neighbor cells in the stem cell niche, raising the question on how cell fate can be accurately controlled.

I hypothesize that fate of tissue stem cells is controlled by metabolism running jointly within the surrounding cellular community, and the geometry of the niche regulates stem cells via effects on this communal metabolism. In order to first identify metabolic pathways capable of altering cell fate, we will establish the exact order of metabolic and transcriptional events that distinguish the two daughters cells in the first hours after asymmetric cell division. Second, to assess the extent and impact of metabolite sharing in the stem cell niche, we will develop methods capable of detecting exchange of metabolites that are produced specifically in one cell type and used by others. Finally, to study the impact of niche geometry, we will develop artificial scaffolds instructing custom niche topology, and study the communal metabolism and stem cell fate regulation on tissue mimetic and non-physiologic niche geometries.

The work is enabled by our unique research tools allowing identification of cells with distinct fates based on the chronological age of organelles they inherit in cell division. Moreover, we study two stem cell systems with opposing dynamics, providing insights on general principles and increasing robustness of the study plan. Our work also has the potential to uncover metabolic tools advancing protocols for future cellular therap

Host institution

HELSINGIN YLIOPISTO
Net EU contribution
€ 2 617 155,00
Address
YLIOPISTONKATU 3
00014 Helsingin Yliopisto
Finland

See on map

Region
Manner-Suomi Helsinki-Uusimaa Helsinki-Uusimaa
Activity type
Higher or Secondary Education Establishments
Links
Total cost
€ 2 617 155,00

Beneficiaries (1)