Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Growing Machines Capable of Rapid Learning in Unknown Environments

Description du projet

Des machines intelligentes qui maîtrisent des situations inconnues

Malgré les progrès remarquables réalisés par l’IA et les réseaux neuronaux, leurs capacités sont limitées par rapport à l’intelligence biologique. Les systèmes d’IA sont conçus et optimisés par des experts, tandis que les systèmes biologiques sont auto-organisés par un programme génétique plus petit et possèdent des capacités comportementales plus variées dès la naissance. Le projet GROW-AI, financé par l’UE, entend développer des machines dotées d’une plus grande adaptabilité et intelligence générale en combinant la vie artificielle, la neurobiologie et l’apprentissage automatique. En outre, il examinera le potentiel de la croissance algorithmique pour comprendre et créer de l’intelligence.

Objectif

"Despite major advances in the field of artificial intelligence, especially in the field of neural networks, these systems still pale in comparison to even simple biological intelligence. Current machine learning systems take many trials to learn, lack common-sense, and often fail even if the environment only changes slightly. The enormous potential of autonomous machines remains unfulfilled and we still lack robots to fill our dishwashers or go on autonomous search-and-rescue missions. The grand goal of GROW-AI is to create machines with a more general intelligence, allowing rapid adaption in unknown situations. In stark contrast to current neural networks, whose architectures are designed by human experts and whose large number of parameters are optimized directly, evolution does not operate directly on the parameters of biological nervous systems. Instead, these nervous systems are grown and self-organize through a much smaller genetic program that produces rich behavioral capabilities right from birth and the ability to rapidly learn. Neuroscience suggests this ""genomic bottleneck"" is an important regularizing constraint, allowing animals to generalize to new situations. However, currently there does not exist a solution to creating a similar system artificially. We address this challenge with two ambitious ideas. First, we will learn genomic bottleneck algorithms instead of manually designing them, exploiting recent advances in memory-augmented deep neural networks that can learn complex algorithms. In addition, we will co-optimize task generators that provide the agents with the most effective learning environments. Taking inspiration from the fields of artificial life, neurobiology, and machine learning, we will investigate if algorithmic growth is needed to understand and create intelligence. If successful, this project will greatly improve the autonomy of machines and significantly increase the range of real-world tasks they can solve."

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-ERC - HORIZON ERC Grants

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2021-COG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

IT-UNIVERSITETET I KOBENHAVN
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 994 225,00
Adresse
RUED LANGGAARDSVEJ 7
2300 KOBENHAVN
Danemark

Voir sur la carte

Région
Danmark Hovedstaden Byen København
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 994 225,00

Bénéficiaires (1)

Mon livret 0 0