Project description
Informed decision on immunotherapy
Immunotherapy constitutes a very promising strategy that activates a person’s own immune system to fight cancer and creates anti-cancer immunity. However, clinical practice has shown that immunotherapy can lead to autoimmune reactions, indicating that careful planning is required. Funded by the European Research Council, the ImmunoChip project aims to develop a platform that will be able to predict a person’s suitability to receive immunotherapy. The ImmunoChip device will combine microfluidics and a nanosensory network to study various aspects of the individual cancer and its microenvironment. Alongside information on immune system components, the platform will help clinicians make an informed decision on the type of immunotherapy for a patient.
Objective
Every day cancer takes about 30000 lives worldwide, despite multiple treatments developed in the last 50 years. True revolution in the therapy is demonstrated by the immunooncology relying on multiple routes to activate the immune system, using e.g. Chimeric Antigen Receptors, checkpoints inhibitors. Although demonstrating success in the treatment of e.g. lymphoma, the percentage of patients responding to the immunotherapy is less than 30%. Even more, the activation of immune system does not happen at no cost, leading to severe auto-immune reactions, sometimes with lethal consequences. Therefore, the main question of clinicians is: how to efficiently predict the response/no-response of the patient to the immunotherapy? At present, there is no predictive technological platform combining both, highly sensitive analysis of the cancer immunity and the planning of the strategy for potential therapy.
I consider cancer as a smart self-adapting machine that plays its own set of rules: it generates and quenches the biochemical signals; initiates the iterative loops and builds up feedback controls to create an immune suppressive environment. My idea is to digitalize these mechanisms. ‘ImmunoChip’ will develop a device combining microfluidics with the specific nanosensory network to study elements of the cancer-immunity cycle to bring a new dimension in the field of preclinical immunotherapeutic cancer phenotyping. The information about the immunosuppressive activity of the cancer microenvironment, immune checkpoints, T cells, efficiency of the immunotherapy, will be collected into respective data patterns. The developed ‘ImmunoChip’ platform will help to answer the questions: can the patient be treated with the immunotherapy? How does the tumor protect itself? Which immunotherapy to use? I am sure that improved decision-making in immunotherapy will lead to a transformative treatment results for more patients and will help to save more lives.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences classical mechanics fluid mechanics microfluidics
- social sciences political sciences political transitions revolutions
- medical and health sciences clinical medicine oncology
- medical and health sciences basic medicine immunology immunotherapy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
01328 Dresden
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.