Project description DEENESFRITPL Biomimetic chip for integrated sensing and neural computation The EU-funded InsectNeuroNano project aims to develop innovative on-the-chip nanophotonic devices for integrated sensing and computation, inspired by the insect neural system. The technology will combine advanced knowledge of insect neurobiology for circuit designs and autonomous navigation with nanowire semiconductivity to exploit light for interconnection. It will exploit stable molecular dyes as novel memory components and use circuit technology for quantum computing. As proof of concept, InsectNeuroNano will recreate a pathway from insect-polarised light sensing to the memory circuits that integrate information to provide a continuous location estimate. The final goal is to create a chip that allows autonomous vehicle navigation without GPS. The developed neural components will then be used as building blocks in a wide spectrum of circuits. Show the project objective Hide the project objective Objective We propose nanophotonic on-chip devices for integrated sensing and neural computation, inspired by the insect brain. This will uniquely combine four lines of research: 1) progress in understanding insect neurobiology that provides proven circuit designs to solve significant problems such as autonomous navigation; 2) advanced III-V semiconductor nanowire technology that exploits light to obtain a large number of interconnects with extremely low power consumption; 3) optically efficient stable molecular dyes that can be used for novel memory components; 4) circuit technology developed for quantum computing. As proof of concept, we target the complete pathway from polarised light sensing in the insect eye to the internal compass and memory circuits by which this information is integrated in a continuous accurate estimate of location. Building on verified models, we will first demonstrate that the computational principles can be implemented using overlapping light signals in a nanoscale system, with high error tolerance and orders of magnitude better energy and spatial footprint than present technologies. We will then explore neuromorphic memory functionalities from nanoelectronics and molecular dyes, in parallel with deeper investigation of the memory substrates in the insect brain. The same nanostructures used for computing can be used for optical sensing, and we will develop an integrated sensor and information processing array to extract global orientation information from polarised skylight. The direct outcome will be an energy efficient, robust chip enabling autonomous vehicle navigation without GPS, with many potential applications; but more importantly, the novel neural components we will develop can then be re-assembled into a wide spectrum of circuits to mimic other computations in the insect brain. The technology platform can be integrated with silicon technology and we will demonstrate the pathway to upscaling and commercialization. Fields of science natural sciencesbiological sciencesneurobiologynatural sciencesbiological scienceszoologyentomologynatural scienceschemical sciencesinorganic chemistrymetalloidsengineering and technologynanotechnologynanophotonicsnatural sciencescomputer and information sciencesdata sciencedata processing Keywords Nanowire semiconductor insect neurobiology nanophotonics nanooptoelectronics neuromorphic computing insect robotics III-V molecular dyes autonomous systems neural network nanostructure Programme(s) HORIZON.3.1 - The European Innovation Council (EIC) Main Programme HORIZON.3.1.1 - The Pathfinder for Advanced Research Topic(s) HORIZON-EIC-2021-PATHFINDEROPEN-01-01 - EIC Pathfinder Open 2021 Call for proposal HORIZON-EIC-2021-PATHFINDEROPEN-01 See other projects for this call Funding Scheme HORIZON-EIC - HORIZON EIC Grants Coordinator LUNDS UNIVERSITET Net EU contribution € 1 496 577,00 Address Paradisgatan 5c 22100 Lund Sweden See on map Region Södra Sverige Sydsverige Skåne län Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 Participants (3) Sort alphabetically Sort by Net EU contribution Expand all Collapse all KOBENHAVNS UNIVERSITET Denmark Net EU contribution € 960 154,00 Address Norregade 10 1165 Kobenhavn See on map Region Danmark Hovedstaden Byen København Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 RIJKSUNIVERSITEIT GRONINGEN Netherlands Net EU contribution € 272 990,00 Address Broerstraat 5 9712CP Groningen See on map Region Noord-Nederland Groningen Overig Groningen Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 LABORATORIO IBERICO INTERNACIONAL DE NANOTECNOLOGIA LIN Portugal Net EU contribution € 499 813,00 Address Avenida mestre jose veiga 4715-330 Braga See on map Region Continente Norte Cávado Activity type Research Organisations Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 Partners (1) Sort alphabetically Sort by Net EU contribution Expand all Collapse all THE UNIVERSITY OF EDINBURGH United Kingdom Net EU contribution € 0,00 Address Old college, south bridge EH8 9YL Edinburgh See on map Region Scotland Eastern Scotland Edinburgh Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00