European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

From inspiral to kilonova

Description du projet

Une nouvelle approche informatique pour étudier la fusion des étoiles à neutrons

La première fusion d’étoiles à neutrons a été observée par les détecteurs de LIGO et Virgo en 2017, marquant une avancée considérable pour l’astronomie multi-messagers. Le projet INSPIRATION, financé par l’UE, a pour ambition d’intégrer les ondes gravitationnelles et le rayonnement électromagnétique, causés par des processus complètement différents, en un modèle unique. Les chercheurs feront appel à une nouvelle méthode de calcul récemment mise au point: le premier code mondial d’hydrodynamique relativiste lagrangienne qui résout également de manière cohérente les équations d’Einstein. L’étude fournira pour la première fois des structures physiques détaillées de la physique à long terme de la fusion et des signaux d’ondes gravitationnelles, de neutrinos et d’ondes électromagnétiques.

Objectif

"Recent years have seen the blossoming of multi-messenger astrophysics where gravitational waves, photons and neutrinos provide complementary views on cosmic explosions involving some of the Universe’s most enigmatic objects, namely neutron stars and black holes. The first observation of a neutron star merger via both gravitational waves and, days later, an electromagnetic flash called ""kilonova"" enabled huge scientific leaps forward and was therefore celebrated as ""2017 Breakthrough of the Year"". Multi-messenger astrophysics has an enormous potential to solve many longstanding puzzles such as the origin of the heaviest elements or the nature of the densest matter in the Universe, provided that we understand how the different messengers are physically connected. The gravitational wave and electromagnetic emission stages, however, involve vastly different length and time scales and completely different physical processes. Therefore, currently strong assumptions need to be made how both stages are actually physically connected. On the verge of this transformational era of physics, I propose to calculate for the first time the evolution from the inspiral (milliseconds before the merger) to the time after the kilonova (months later) within a common simulation framework. This will become possible via the novel computational methodology that I have recently developed: the world-wide first Lagrangian hydrodynamics code that also consistently solves Einstein's equations. Compared to conventional Numerical Relativity codes, my new development has major advantages in evolving the merger ejecta which finally cause the kilonova. This project will provide for the first time detailed physical structures of neutron star merger remnants and the first one-to-one mapping between the physics of the merger and the gravitational wave, neutrino and electromagnetic signals. This will present a major breakthrough for both the nuclear astrophysics and the multi-messenger communities."

Institution d’accueil

UNIVERSITAET HAMBURG
Contribution nette de l'UE
€ 2 499 675,00
Adresse
MITTELWEG 177
20148 Hamburg
Allemagne

Voir sur la carte

Région
Hamburg Hamburg Hamburg
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 2 499 675,00

Bénéficiaires (1)