Project description
Groundbreaking framework to automatically analyse relationships between texts
Natural language processing (NLP) fails to support the analysis of fine-grained relationships between texts – intertextual relationships. This is a crucial milestone for AI as it would allow analysing the origin and evolution of texts and ideas, and enable new applications of AI to text-based collaboration, from education to business. Funded by the European Research Council, the InterText project is developing the first-ever framework for exploring intertextuality in NLP. InterText will develop conceptual and applied models and data sets for the study of inline commentary, implicit linking and document versioning. The models will be evaluated in two case studies involving academic peer review and conspiracy theory debunking.
Objective
Interpreting text in the context of other texts is very hard: it requires understanding the fine-grained semantic relationships between documents called intertextual relationships. This is critical in many areas of human activity, including research, business, journalism, and others. However, finding and interpreting intertextual relationships and tracing information throughout heterogeneous sources remains a tedious manual task. Natural language processing (NLP) fails to adequately support it: mainstream NLP considers texts as static, isolated entities, and existing approaches to cross-document understanding focus on narrow use cases and lack a common, theoretical foundation. Data is scarce and difficult to create, and the field lacks a principled framework for modelling intertextuality.
InterText breaks new ground by proposing the first general framework for studying intertextuality in NLP. We instantiate our framework in three intertextuality types: inline commentary, implicit linking, and semantic versioning. We produce new datasets and generalizable models for each of them. Rather than treating text as a sequence of words, we introduce a new data model that naturally reflects document structure and cross-document relationships. We use this data model to create novel, intertextuality-aware neural representations of text. While prior work ignores similarities between different types of intertextuality, we target their synergies. Thus, we offer solutions that scale to a wide range of tasks and across domains. To enable modular and efficient transfer learning, we propose new document-level adapter-based architectures. We investigate integrative properties of our framework in two case studies: academic peer review and conspiracy theory debunking. InterText creates a solid research platform for intertextuality-aware NLP crucial for managing the dynamic, interconnected digital discourse of today.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
64289 DARMSTADT
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.