Descripción del proyecto
Almacenamiento de hidrógeno en marcos organometálicos
El hidrógeno es un combustible fiable de nueva generación, sobre todo para propulsar automóviles, calentar hogares y generar electricidad. Con todo, uno de los principales escollos que impiden su adopción generalizada es la falta de tecnologías de almacenamiento de hidrógeno eficaces y seguras. El proyecto MOST-H2, financiado con fondos europeos, propone una forma innovadora de almacenar hidrógeno de manera eficaz, segura y rentable, desde el laboratorio hasta el depósito. Sus investigadores emplearán un nuevo tipo de materiales cristalinos, denominados marcos organometálicos, que son ideales para el almacenamiento de hidrógeno debido a su elevada superficie específica y sus dimensiones de poro adaptadas. En este contexto, se prestara especial atención al desarrollo y la ampliación de formas monolíticas de materiales para marcos organometálicos a fin de facilitar la integración en un depósito de almacenamiento de crioadsorción.
Objetivo
Widespread use of hydrogen as an energy carrier is a key priority for the EU, in order to achieve its climate and energy transition targets. Developing sustainable, efficient and safe hydrogen storage technologies has, however, proved challenging. MOST-H2, in full alignment with the requirements of HORIZON-CL4-2021-RESILIENCE-01-17, proposes an integrated multiscale lab-to-tank approach to develop, validate and demonstrate innovative, low cost cryo-adsorptive hydrogen storage, using monolithic Metal-Organic Framework (MOF) adsorbents, with an optimal combination of volumetric and gravimetric capacity, but also a small environmental footprint. Advanced synthetic strategies and sophisticated computational techniques, including molecular simulation and machine learning, will be combined in a cyclic materials development approach, to deliver new high performance, sustainable-by-design MOF adsorbents. The main aim is to computationally design, then synthesise and validate experimentally, ultra porous MOFs with usable storage capacities above 10 wt% and 50 g/L on a materials basis, at an operating pressure below 100 bar. This represents an essential step towards more efficient, intrinsically safer and cost effective storage solutions, compared to conventional hydrogen storage technologies. An important part of the project will be devoted to developing and upscaling monolithic forms of optimal MOF materials to allow easy integration into a cryo-adsorption storage tank, specifically designed for this purpose, which will be tested in a TRL 5 environment. The outcomes, coupled with full life cycle analysis and techno-economic assessment of MOST-H2 technology, with a view to selected end uses (rail and road applications), will form the basis for elaborating future market penetration plans through a solid horizontal dissemination and exploitation strategy.
Ámbito científico
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
Palabras clave
Programa(s)
Convocatoria de propuestas
HORIZON-CL4-2021-RESILIENCE-01
Consulte otros proyectos de esta convocatoriaRégimen de financiación
HORIZON-RIA - HORIZON Research and Innovation ActionsCoordinador
15341 Agia Paraskevi
Grecia