Description du projet
Modélisation du comportement des structures déployables
Les structures déployables telles que les antennes ou les télescopes sont capables de modifier leur géométrie, leur forme et leur taille. Cette capacité de déploiement et de contraction tient aux propriétés mécaniques des mâts et des membranes spécifiques. Financé par le programme Actions Marie Skłodowska-Curie, le projet NOVITAS s’attache à développer des modèles mathématiques de prédiction des contraintes et des défaillances de ces structures, ainsi que le rôle des différents matériaux dans leur déploiement fructueux, notamment dans les applications spatiales. Les chercheurs valideront leurs modèles grâce à des expériences physiques, offrant ainsi aux ingénieurs un moyen efficace de concevoir des structures spatiales.
Objectif
NOVITAS aims to generate novel advances in the mathematical modelling of deployable and ultra-thin structures. They consist of booms and membranes that are first flat and coiled around a cylinder, and then they passively deploy, releasing the elastic strain energy stored during the furling phase. During history, deployable structures were adopted for various space applications, for instance, for telescopes, photovoltaic surfaces and antennas. The adoption of deployable booms allows larger structures to be easily and efficiently packaged for launch and reliably deployed on orbit. Despite the reliability of this kind of structure, there are still some issues to be tackled, including the development of a mathematical model able to deal with the accurate definition of the multiscale three-dimensional stress state and failure identification, the material viscoelastic effects, the effects of new composite materials and the multibody simulation for the deployment phase. We will address these issues with an innovative and interdisciplinary approach that combines theoretical, numerical and experimental investigations. The mathematical models formulated by NOVITAS will be able to accurately describe the nonlinear (mainly geometrical) behaviour that this kind of structure typically show during their services, whereas current models fall short due to their time-consuming analyses. We will compare and validate the numerical results with those obtained by experiments, which consists of the creation of a prototype at the Space Structures Laboratory at Caltech, for the viscoelastic and thermal multiphysics testing and simulation of deployment phases to be simulated with a multibody approach. The developed modelling technique will provide engineers with an efficient way for the design of space structures, consistently with the space-based technological innovation necessary for the always more ambitious needs of our society and to encourage a sustainable European economy.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- lettreshistoire et archéologiehistoire
- sciences naturellesinformatique et science de l'informationscience informatiquemultiphysique
- sciences naturellesmathématiquesmathématiques appliquéesmodèle mathématique
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Programme(s)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Appel à propositions
(s’ouvre dans une nouvelle fenêtre) HORIZON-MSCA-2021-PF-01
Voir d’autres projets de cet appelRégime de financement
HORIZON-TMA-MSCA-PF-GF - HORIZON TMA MSCA Postdoctoral Fellowships - Global FellowshipsCoordinateur
10129 Torino
Italie