Objective When we move, our muscles contract, and by doing so change shape. While such shape changes are obvious and are required for a muscle to increase its force, we know little about its functional role in force production. Muscle force is one of the most important parameters in the science of movement, yet it remains impossible to measure in humans. Understanding the precise link between muscle shape changes and muscle forces and advancing methodologies for measuring such muscle shape changes can thus have an important fundamental and ultimately also clinical scientific impact. In I-MUSCLE, I propose to first advance innovative techniques for measuring whole muscle shape changes during muscle contractions, and secondly, to use these advancements to answer key questions about 3D muscle shape changes and its role in force production. I will take an in situ approach to study the calf muscle of guinea fowl (Numida meleagrisis L.). I will stimulate the muscle to induce steady-state contractions at different muscle-tendon unit lengths, at different activation levels, and during concentric and eccentric dynamic contractions. I will measure the muscle shape changes by using state-of-the-art imaging modalities, i.e. ultrafast computed tomography (< 2s) and high-speed stereo (3D) X-ray videography (up to 750 Hz), while also recording muscle forces. The shape changes will be assessed (i) when the muscle is activated globally and (ii) when the muscle is activated locally in specific parts of the muscle. The latter is relevant given that we often activate only parts of our muscles, for example during walking or when using electrical muscle stimulation for rehabilitation purposes. Gaining a better understanding of how muscles change shape under realistic conditions and how it is linked to muscle force is critical for treatment of neurological disorders affecting muscle contraction, patient rehabilitation following injury or surgery, and development of bio-inspired robotics. Fields of science medical and health sciencesclinical medicinesurgerymedical and health sciencesclinical medicinephysiotherapyengineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringroboticsmedical and health sciencesbasic medicineneurology Keywords Muscle contraction Comparative neuromechanics Muscle biomechanics Neuromechanics Cineradiography Statistical shape modelling Muscle imaging Muscle dynamics Programme(s) HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme Topic(s) HORIZON-MSCA-2021-PF-01-01 - MSCA Postdoctoral Fellowships 2021 Call for proposal HORIZON-MSCA-2021-PF-01 See other projects for this call Funding Scheme HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships Coordinator UNIVERSITEIT ANTWERPEN Net EU contribution € 175 920,00 Address Prinsstraat 13 2000 Antwerpen Belgium See on map Region Vlaams Gewest Prov. Antwerpen Arr. Antwerpen Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00