European Commission logo
English English
CORDIS - EU research results

Exosome Characterization Platform for Early Detection of Breast Cancer

Project description

Innovative platform for detecting early breast cancer biomarkers in exosomes extracted from blood

Early detection in the case of breast cancer dramatically increases the survival rate. Exosomes are particles secreted from the cells into the body fluids. They emerged as biomarkers for liquid biopsy, carrying information about the cell of origin. Funded by the Marie Skłodowska-Curie Actions programme, the EXCEED project aims to develop a platform for the isolation and label-free optical characterisation of exosomes extracted from blood. The platform will combine the label-free imaging in interferometric microscopy and the chemical content information obtained by Raman spectroscopy. It will be tested using the exosomes from tumour cells to determine possible biomarkers for diagnosis. The final platform validation will be performed on healthy donors and breast cancer patients.


Breast cancer is the most common cancer among women worldwide. Early detection is the most critical element, as the survival rate increases by up to 99%. Although there are conventional screening techniques such as mammography, breast cancer is still the second leading cause of cancer death in women. One of the holy grails in cancer research is to develop a blood test for early detection. Sensitive, non-invasive, and easy-to-use liquid biopsy techniques will revolutionize cancer diagnosis and treatment monitoring. The goal of this project is to develop a complete platform for the isolation and label-free optical characterization of biological nanoparticles called exosomes extracted from blood. Exosomes are secreted from the cells into the body fluids and play an important role in intercellular communication. These particles are emerged as potential biomarkers for liquid biopsy applications, as they carry information about their original cell. However, the translation of exosome-based analyses from research labs to clinical settings is limited due to the lack of efficient isolation and quantification tools available. We aim to develop a novel exosome characterization platform, named multimodal Interferometric-Raman imaging platform to detect and quantify exosomes at a single-particle level without using any labels. The combination of the label-free imaging capability of interferometric microscopy and the chemical content information provided by Raman spectroscopy will be an important step for exosome-based diagnostics applications. The proposed system will be integrated into a state-of-the-art isolation tool, creating complete isolation and multiparameter characterization platform. The proposed platform will be tested with the exosomes isolated from tumor cells to determine possible biomarkers that can be used for diagnosis. The diagnostic capability of the system will be validated with healthy donors and breast cancer patients(30 persons each)

Funding Scheme



Net EU contribution
€ 268 803,36
34450 Istanbul

See on map

İstanbul İstanbul İstanbul
Activity type
Higher or Secondary Education Establishments
Total cost
No data

Partners (1)