Descripción del proyecto
¿Se puede entrenar a un robot como un corredor de bolsa?
El aprendizaje automático ha favorecido avances en múltiples campos como, por ejemplo, el reconocimiento de imágenes y los automóviles autónomos. En el proyecto DataABM, financiado con fondos europeos, se quiere incrementar este potencial al entrenar un ordenador para que simule el comportamiento de los inversores en el mercado de valores. Para ello, sus investigadores crearán un modelo basado en agentes (ABM, por sus siglas en inglés), que se entrenará por aprendizaje automático con un gran conjunto de datos de inversores. El modelo podría mejorar la comprensión del proceso de toma de decisiones de los inversores, así como ofrecer una herramienta para predecir y simular mejor las fluctuaciones del mercado de valores. Esto podría ayudar a los reguladores y los responsables políticos a calcular la repercusión de las medidas económicas en el futuro.
Objetivo
Image recognition or self-driving cars are just a few among many applications of machine learning (ML) methods. Given that we can train a cobot to mimic human behaviour, why not train a computer to mimic and simulate investor behaviour in stock markets? This would not only improve understanding about investor decision making and their interaction, but provide effective tools to predict investor behaviour on the microscopic level and simulate stock markets on the macroscopic level. The main objective is to create a data-driven Agent-Based Model (ABM), where agents' behaviour is governed by ML. Such models need appropriate data to be trained, which is possible thanks to a unique, big data set on investor level data accessible through the host. The objectives are: i) framework for data-driven ABM, ii) interpretable ML for ABM, iii) verification of the interpretability of data-driven ABMs using synthetic data, iv) training the data-driven ABMs using actual shareholder registration data, and finally v) analysis of investors decision-making mechanism. The objectives will be reached by using ML methods that achieve intrinsic interpretability with and without deep supervised learning. This research requires: a) strong numerical skills and experience with simulations, b) computer infrastructure allowing to carry out largescale numerical analysis for which the fellow and the host have complementary experience. The results will bring us closer to understanding the behavioural mechanism of market participants. The project does not just gain understanding, but introduces a data-driven approach to more realistic agent-based modelling, which is completely new. The outcome should focus the attention of regulators and policy makers, who are often unable to realistically predict the effects of considered economic measures. Finally, the project contributes to the ML literature on verification of interpretable methods with extensive data sets.
Palabras clave
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) HORIZON-MSCA-2021-PF-01
Ver todos los proyectos financiados en el marco de esta convocatoriaCoordinador
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
33100 TAMPERE
Finlandia
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.