Project description
Steps towards trustworthy machine learning
Machine learning (ML) is poised to help advance the deep decarbonisation of the energy sector. Its ability to learn in complex environments and provide solutions puts ML in a position to dramatically transform power systems. However, emerging EU verification standards will require that all ML and Reinforcement Learning (RL) used in safety-critical applications be demonstrably trustworthy. The EU-funded TRUST-ML project aims to develop a unified framework for assessing the quantitative trustworthiness of the neural network models commonly used in power systems. TRUST-ML will use a novel, convex optimisation approach to assess ML trustworthiness in terms of performance, robustness and interpretability. It is also designed to meet the emerging needs of actual power systems.
Objective
Deep decarbonization of the energy sector will require massive penetration of stochastic renewable energy resources and an enormous amount of grid asset coordination; this represents a challenging paradigm for power system operators. With its ability to learn in complex environments and provide predictive solutions on fast timescales, machine learning (ML) is posed to help overcome these challenges and dramatically transform power systems in coming decades. Emerging EU verification standards, however, will require that all ML and Reinforcement Learning (RL) used in safety critical applications be demonstrably trustworthy. In this project, we develop a unified framework, known as Trust-ML, for assessing the quantitative trustworthiness of the neural network models commonly used in power systems. Trust-ML uses a novel, convex optimization approach to assess ML trustworthiness across three key dimensions: performance, robustness, and interpretability. The approach is engineered to be scalable, and by design, it generates exact verification guarantees. Furthermore, Trust-ML is designed to meet the emerging needs of actual power systems. In particular, it can verify the performance of multi-agent RL systems in rigorous ways, and its relaxed counterpart can offer tractable, worst-case performance guarantees in the context of online learning. The resulting verification tools will be published as open-source software packages and shared widely with researchers and industry. This project will advance state-of-the-art methods across several interdisciplinary fields, it will help remove the barriers associated with machine learning deployment in power systems, and its outcomes will help push European power grids into competitive spaces. Coming from MIT with advanced training in power systems, the project PI, Samuel Chevalier, is characteristically well-suited to build Trust-ML, and his team of advisors represents a mixture of experts across power, optimization, and learning.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2021-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
2800 Kongens Lyngby
Denmark
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.