Descripción del proyecto
Pasos hacia un aprendizaje automático fiable
El aprendizaje automático (AA o ML, por sus siglas en inglés) está preparado para ayudar a avanzar en la profunda descarbonización del sector energético. Su capacidad para aprender en entornos complejos y aportar soluciones pone al AA en condiciones de transformar drásticamente los sistemas energéticos. Sin embargo, las nuevas normas de verificación de la Unión Europea exigirán que se pueda demostrar la fiabilidad de todo el AA y el aprendizaje por refuerzo utilizados en aplicaciones críticas para la seguridad. El objetivo del proyecto TRUST-ML, financiado con fondos europeos, es elaborar un marco unificado para evaluar la fiabilidad cuantitativa de los modelos de redes neuronales utilizados habitualmente en los sistemas energéticos. El equipo de TRUST-ML utilizará un novedoso método de optimización convexa para evaluar la fiabilidad del AA en términos de rendimiento, solidez e interpretabilidad. También está diseñado para satisfacer las nuevas necesidades de los sistemas energéticos ya existentes.
Objetivo
Deep decarbonization of the energy sector will require massive penetration of stochastic renewable energy resources and an enormous amount of grid asset coordination; this represents a challenging paradigm for power system operators. With its ability to learn in complex environments and provide predictive solutions on fast timescales, machine learning (ML) is posed to help overcome these challenges and dramatically transform power systems in coming decades. Emerging EU verification standards, however, will require that all ML and Reinforcement Learning (RL) used in safety critical applications be demonstrably trustworthy. In this project, we develop a unified framework, known as Trust-ML, for assessing the quantitative trustworthiness of the neural network models commonly used in power systems. Trust-ML uses a novel, convex optimization approach to assess ML trustworthiness across three key dimensions: performance, robustness, and interpretability. The approach is engineered to be scalable, and by design, it generates exact verification guarantees. Furthermore, Trust-ML is designed to meet the emerging needs of actual power systems. In particular, it can verify the performance of multi-agent RL systems in rigorous ways, and its relaxed counterpart can offer tractable, worst-case performance guarantees in the context of online learning. The resulting verification tools will be published as open-source software packages and shared widely with researchers and industry. This project will advance state-of-the-art methods across several interdisciplinary fields, it will help remove the barriers associated with machine learning deployment in power systems, and its outcomes will help push European power grids into competitive spaces. Coming from MIT with advanced training in power systems, the project PI, Samuel Chevalier, is characteristically well-suited to build Trust-ML, and his team of advisors represents a mixture of experts across power, optimization, and learning.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Palabras clave
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) HORIZON-MSCA-2021-PF-01
Ver todos los proyectos financiados en el marco de esta convocatoriaCoordinador
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
2800 Kongens Lyngby
Dinamarca
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.