Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Ultra Frequency-Stable Laser via Spectral Hole Burning in Rare-earth Ion Doped Crystals

Project description

Redefining the second with ultra-frequency lasers

Throughout history, advancing technology has led to ever greater precision in the measurement of time. The EU-funded UltraStabLaserViaSHB project seeks to take metrology a step further, using an ultra-frequency laser that is stable down to the attometre range at 1 second. Such a laser would form the backbone of new optical clocks, which are currently limited by frequency fluctuations. Researchers will achieve this by using a novel method to stabilise a laser with rare-earth ion doped crystals. By employing spectral hole burning, they will imprint a pattern on a crystal at cryogenic temperatures that can be used as a control signal for a probe laser. The result could enable better gravitational-wave detection and tests of general relativity.

Objective

"The UltraStabLaserViaSHB project seeks to catch the currently elusive grand prize of time and frequency metrology: a frequency source with a relative stability on the order of 10^-18 at 1 s. The desirability of this goal is borne of the near-future redefinition of the SI unit of time, the second. As optical atomic clocks surpass microwave-frequency atomic clocks in accuracy, the switch to an optical definition of the second drives the metrology field to strive to the fundamental performance limit of optical clocks, the quantum projection noise limit. Currently, optical clock performance is limited by frequency fluctuations of the optical-cavity-stabilized laser field which probes the atoms' optical transition. The optical lattice clocks located at SYRTE could reach their quantum projection limit if a probe laser with a sufficient frequency stability could be realized.
The project proposed here seeks develop an ultra frequency stable laser at SYRTE to reach this performance via a paradigm shift in laser stabilization, away from optical cavity frequency references (which themselves approach their fundamental limit, Brownian noise) and toward a novel method: laser stabilization via spectroscopy of rare-earth ion doped crystals. This is achieved through a technique called Spectral Hole Burning (SHB) where a spectral pattern is imprinted on the crystal at cryogenic temperatures by a pre-stabilized laser (a spectral ""hole"" is ""burnt""). A probe beam then interacts with this spectral hole and the resulting de-phasing of the probe beam provides the source for a control signal which allows us to actuate the probe laser, stabilizing it to the narrow line of the rare earth ion. Early results in this young technique are extremely promising and its limits are yet undiscovered. The result will impact not only time metrology, but all fields which rely on ultra-stabilized lasers such as gravitational-wave detection, fundamental constant measurements, and tests of general relativity."

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2021-PF-01

See all projects funded under this call

Coordinator

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 211 754,88
Address
RUE MICHEL ANGE 3
75794 PARIS
France

See on map

Region
Ile-de-France Ile-de-France Hauts-de-Seine
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Partners (1)

My booklet 0 0