Project description
A better biosensor to monitor herbicide residues
Herbicides have been used extensively since the 1950s. But these chemical weed killers have long-lasting activity in the soil and residues seep into our ecosystems, drinking water and food. Current monitoring methods are expensive and time-consuming, requiring special techniques and training. In this context, the EU-funded B-FHAB project will develop a biosensor that makes rapid, low-cost, sensitive herbicide detection widely accessible. Through a redox polymer transduction matrix, biosensors will be improved. The overall aim is to broaden the scope of sensing beyond a small class of residues. Also, the approach lays the groundwork for a modular biosensing platform that can be expanded beyond herbicides, to include biomarkers for monitoring health and detecting disease.
Objective
The introduction of agrochemicals has drastically improved crop yields, largely thanks to the use of herbicides that kill crop competing weeds. Unfortunately, herbicides residues often find their way into our ecosystems, drinking water and food. Current means to monitor herbicide residues utilize expensive, time-consuming methodologies such as liquid chromatography coupled to mass spectroscopy, a technique typically restricted to First world countries and trained users. A biosensor provides a means for rapid, low-cost, sensitive herbicide detection that is widely accessible even in developing countries. I have previously evaluated a biosensing platform using an electrode coated with bacterial reaction centres, but found that it was not sensitive enough to meet EU drinking water standards, was limited to sensing a small class of herbicide residues and was not stable enough under storage for widespread distribution. To tackle the issue of low stability, I implemented a redox polymer transduction matrix, resulting in biosensor stability for hours during operation and months in storage. I then approached the most challenging aspect of boosting biosensor sensitivity by re-designing the biological recognition element itself, using docking simulations to guide enzyme design that resulted in validated improvements in biosensor sensitivity in the lab. This forms the platform for my research within the MSCA Postdoctoral fellowship, wherein I seek to push enzyme-herbicide binding affinities to reach a biosensor sensitivity that meets EU standards, expand the scope of sensing beyond a small class of residues, and sense not just single but multiple herbicide residues on a single test strip. The results of this work will lead to a herbicide biosensor that approaches market viability, and lays the groundwork for a modular biosensing platform that can be extended beyond herbicides, to include biomarkers for monitoring health and detecting disease.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors biosensors
- engineering and technology environmental biotechnology biosensing
- agricultural sciences agriculture, forestry, and fisheries agriculture
- natural sciences biological sciences botany
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2021-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80333 Muenchen
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.