Objective
Optical sensing and imaging has evolved from taking digital images to a powerful metrology, imaging and data acquisition
technique by expanding the spectral coverage from the visible to the short-wave infrared (SWIR). SWIR sensing and
imaging is the cornerstone of advanced imaging techniques for 3D visualization, night vision, imaging though adverse
weather conditions, biomedical imaging, spectroscopy for food quality and health monitoring, just to name a few. The huge
market size of such applications, especially by entering volume markets including consumer electronics and automotive, has
led to the first commercial appearances of low cost CMOS compatible SWIR photodetectors and image sensors. Yet for the
realization of the afore-mentioned technologies the optical source is an equally important and crucial component to be
considered at system level. To date, there is a lack of infrared optical sources that are CMOS compatible, low-cost with
competitive performance over the standard costly epitaxial III-V light emitters. Moreover high cost and epitaxial growth
manufacturing processes have limited the size and form factor of those sources to small and rigid elements preventing their
use as high power and large area illumination sources. SWIRL will undertake this challenge to develop high performance
low-cost SWIR optical sources with tunable emission peaks and spectral bandwidths across the eye-safety SWIR window,
exploiting colloidal quantum dot technology. By leveraging engineering at the nanoscale and solution processed materials
we will develop in TRL4/5 SWIR optical emitters that are low-cost, high efficiency, even rivalling their epitaxial counterparts,
and spectrally versatile across the SWIR. We will further demonstrate their use in key applications related to automotive
industry as optical sources for active SWIR imaging and in-cabin monitoring in the eye-safety infrared window.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors optical sensors
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC-POC - HORIZON ERC Proof of Concept Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-POC1
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
08860 Castelldefels
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.