Project description
Augmented reality meets battery manufacturing
Battery technology has come a long way. Today’s scientists and engineers are responsible for developing modern batteries for the future. With this in mind, the ERC-funded SMARTISTIC project will develop and demonstrate a prototype of a smart and interactive augmented reality (AR) software, usable from tablets and AR glasses by touch and hand gestures, respectively. SMARTISTIC will blend holograms, powered with unique physical and machine learning (ML) models, developed and validated experimentally by previous ERC research. The interaction with holograms will allow a user without programming skills to create real-time databases from ongoing experiments, launch computations for experimental results analysis, or request ML predictions about the intended formulation and manufacturing process impact on the electrode properties.
Objective
The SMARTISTIC project aims at developing and demonstrating a first prototype of a smart and interactive Augmented Reality (AR) software designed to assist in the decision-making of battery scientists, engineers and operators while they are working in electrode formulation and manufacturing in laboratories or in production lines. The software will be usable from tablets and AR glasses by touch gesture and hand gesture respectively. The software will blend holograms with the real world manufacturing equipment. Such holograms will be powered with the unique physical and machine learning (ML) models developed and validated experimentally in my ERC CoG ARTISTIC project and which can predict the impact of manufacturing parameters on the final electrode properties. By interacting with the holograms and without the need of programming skills, a user can in real-time create databases from her/his ongoing experiments, launch computations for analysis of experimental results, or request ML predictions about the impact of her/his intended formulation and manufacturing process on the electrode properties. She/he can also use the software to analyze possible deviations between the experimental results and the predictions to identify more easily factors that could explain unexpected experimental results. The prototype will be developed by accounting for the users' needs and from the observation of work situations. Once developed, we will perform tests and demonstrations to assess the software usability and ergonomics for its improvement while used in real situations. They will be carried out in the battery manufacturing platform of our laboratory and in companies and in institutes which already manifested interest in our proof of concept. The assessments will permit improving the software to ensure its wide acceptance. We will also analyze the IP, technology transfer and market opportunities to valorize the intended software, also thanks to networking activities.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences software
- natural sciences computer and information sciences databases
- engineering and technology materials engineering
- social sciences psychology ergonomics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC-POC - HORIZON ERC Proof of Concept Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-POC1
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80025 AMIENS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.